
Simulink®

Simulation and Model-Based Design

Modeling

Simulation

Implementation

Writing S-Functions
Version 6

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Writing S-Functions

© COPYRIGHT 1998–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
October 1998 First printing Revised for Simulink 3.0 (Release R11)
November 2000 Second printing Revised for Simulink 4.0 (Release R12)
July 2002 Third printing Revised for Simulink 5.0 Release R13)
April 2003 Online only Revised for Simulink 5.1 (Release R13SP1)
April 2004 Online only Revised for Simulink 5.1.1 (Release R13SP1+)
June 2004 Online only Revised for Simulink 6.0 (Release R14)
October 2004 Online only Revised for Simulink 6.1 (Release R14SP1)
March 2005 Online only Revised for Simulink 6.2 (Release R14SP2)
September 2005 Online Only Revised for Simulink 6.3 (Release R14SP3)
March 2006 Online only Revised for Simulink 6.4 (Release 2006a)
September 2006 Online only Revised for Simulink 6.5 (Release 2006b)

Contents

Overview of S-Functions

1
What Is an S-Function? . 1-2

Using S-Functions in Models . 1-3
Passing Parameters to S-Functions 1-4
When to Use an S-Function . 1-6

How S-Functions Work . 1-7
Mathematics of Simulink Blocks . 1-7
Simulation Stages . 1-7
S-Function Callback Methods . 1-9

Implementing S-Functions . 1-10
M-File S-Functions . 1-10
MEX-File S-Functions . 1-11

S-Function Concepts . 1-13
Direct Feedthrough . 1-13
Dynamically Sized Arrays . 1-14
Setting Sample Times and Offsets . 1-15

S-Function Examples . 1-19
M-File S-Function Examples . 1-21
C S-Function Examples . 1-23
Fortran S-Function Examples . 1-27
C++ S-Function Examples . 1-28
Ada S-Function Examples . 1-28

v

Writing S-Functions in M

2
Introduction . 2-2

Writing Level-2 M-File S-Functions 2-3
About Level-2 M-File S-Functions . 2-3
Level-2 M-File S-Function API . 2-3
M-File S-Function Demos . 2-4
S-Function Template . 2-4
Instantiating a Level-2 M-File S-Function 2-4
Generating Code from a Level-2 M-File S-Function 2-4
Callback Methods . 2-4
Setup Method . 2-6
Run-time Object . 2-6

Maintaining Level-1 M-File S-Functions 2-8
S-Function Arguments . 2-8
S-Function Outputs . 2-9
Defining S-Function Block Characteristics 2-10
Processing S-Function Parameters 2-11

Writing S-Functions in C

3
Introduction . 3-3

Creating C MEX S-Functions . 3-4

Building S-Functions Automatically 3-6
Deploying the Generated S-Function 3-9
How the S-Function Builder Builds an S-Function 3-9

S-Function Builder Dialog Box . 3-11
Parameters/S-Function Name Pane 3-12
Port/Parameter Pane . 3-13
Initialization Pane . 3-14
Data Properties Pane . 3-16
Input Ports Pane . 3-17

vi Contents

Output Ports Pane . 3-18
Parameters Pane . 3-20
Data Type Attributes Pane . 3-21
Libraries Pane . 3-22
Outputs Pane . 3-24
Continuous Derivatives Pane . 3-28
Discrete Update Pane . 3-30
Build Info Pane . 3-32

Example of a Basic C MEX S-Function 3-35
Defines and Includes . 3-37
Callback Implementations . 3-38
Simulink/Real-Time Workshop Interface 3-40
Building the Timestwo Example . 3-40

Templates for C S-Functions . 3-41
S-Function Source File Requirements 3-41
The SimStruct . 3-43
Compiling C S-Functions . 3-44

Legacy Code Tool . 3-45
Overview of Legacy Code Tool . 3-45
Using Legacy Code Tool . 3-47
Legacy Code Tool Data Structure . 3-50
Legacy Code Tool Function Specifications 3-53
Legacy Code Tool Demos . 3-58

How Simulink Interacts with C S-Functions 3-59
Process View . 3-59
Data View . 3-63

Writing Callback Methods . 3-67

Converting Level 1 C MEX S-Functions to Level 2 3-68
Obsolete Macros . 3-71

vii

Creating C++ S-Functions

4
Source File Format . 4-2

Making C++ Objects Persistent . 4-6

Building C++ S-Functions . 4-8

Creating Ada S-Functions

5
Introduction . 5-2

Ada S-Function Source File Format 5-3
Ada S-Function Specification . 5-3
Ada S-Function Body . 5-4

Writing Callback Methods in Ada 5-7
Callbacks Invoked by Simulink . 5-7
Implementing Callbacks . 5-9
Omitting Optional Callback Methods 5-9
SimStruct Functions . 5-9

Building an Ada S-Function . 5-10
Ada Compiler Requirements . 5-10

Example of an Ada S-Function . 5-11
Times_two Package Specification . 5-12
Times_two Package Body . 5-14
mdlInitializeSizes . 5-16
mdlOutputs . 5-16
Building the Times_two Example . 5-17

viii Contents

Creating Fortran S-Functions

6
Introduction . 6-2

Level 1 Versus Level 2 S-Functions 6-2

Creating Level 1 Fortran S-Functions 6-3
Fortran MEX Template File . 6-3
Example of a Level 1 Fortran S-Function 6-3
Inline Code Generation Example . 6-6

Creating Level 2 Fortran S-Functions 6-8
Template File . 6-8
C/Fortran Interfacing Tips . 6-8
Constructing the Gateway . 6-13
Example C MEX S-Function Calling Fortran Code 6-16

Porting Legacy Code . 6-18
Find the States . 6-18
Sample Times . 6-18
Multiple Instances . 6-18
Use Flints if Needed . 6-19
Considerations for Real Time . 6-19

Implementing Block Features

7
Dialog Parameters . 7-2

Tunable Parameters . 7-4

Run-Time Parameters . 7-7
Creating Run-Time Parameters . 7-8
Updating Run-Time Parameters . 7-10
Tuning Runtime Parameters . 7-11

Creating Input and Output Ports . 7-12
Creating Input Ports . 7-12

ix

Creating Output Ports . 7-14
Scalar Expansion of Inputs . 7-15
Masked Multiport S-Functions . 7-17

Custom Data Types . 7-18

Sample Times . 7-20
Block-Based Sample Times . 7-21
Specifying Port-Based Sample Times 7-24
Hybrid Block-Based and Port-Based Sample Times 7-30
Multirate S-Function Blocks . 7-30
Synchronizing Multirate S-Function Blocks 7-32
Specifying Model Reference Sample Time Inheritance 7-33

Work Vectors . 7-36
Work Vectors and Zero Crossings . 7-38
Example Involving a Pointer Work Vector 7-41
Memory Allocation . 7-43

Function-Call Subsystems . 7-44

Processing Frame-Based Signals . 7-49

Handling Errors . 7-52
Exception Free Code . 7-53
ssSetErrorStatus Termination Criteria 7-54
Checking Array Bounds . 7-54

S-Function Examples . 7-56
Example of a Continuous State S-Function 7-56
Example of a Discrete State S-Function 7-63
Example of a Hybrid System S-Function 7-69
Example of a Variable-Step S-Function 7-77
Example of a Zero Crossing S-Function 7-83
Example of a Time-Varying Continuous Transfer

Function . 7-101

x Contents

S-Function Callback Methods — Alphabetical
List

8

SimStruct Functions — By Category

9
Introduction . 9-2

Language Support . 9-2
The SimStruct . 9-2

SimStruct Macros and Functions Listed by Usage 9-3
Input and Output Ports . 9-6
Run-Time Parameters . 9-12
State and Work Vector . 9-17

Examples

A
S-Function Features . A-2

S-Function Examples . A-2

S-Function Builder . A-2

Writing S-Functions in C . A-2

Creating C++ S-Functions . A-2

Creating Ada S-Functions . A-3

Creating Fortran S-Functions . A-3

xi

Index

xii Contents

1

Overview of S-Functions

S-functions (system-functions) provide a powerful mechanism for extending
the capabilities of Simulink®. The following sections explain what an
S-function is and when and why you might use one and how to write your
own S-functions.

What Is an S-Function? (p. 1-2) Brief overview of S-functions.

Using S-Functions in Models (p. 1-3) How to insert S-functions as blocks
in a model and pass parameters to
them.

How S-Functions Work (p. 1-7) How Simulink invokes S-functions
when simulating a model that
includes them.

Implementing S-Functions (p. 1-10) How to write S-functions.

S-Function Concepts (p. 1-13) Key concepts needed to write certain
types of S-functions.

S-Function Examples (p. 1-19) Examples that illustrate the creation
of various types of S-functions and
S-function features.

1 Overview of S-Functions

What Is an S-Function?
An S-function is a computer language description of a Simulink block.
S-functions can be written in MATLAB®, C, C++, Ada, or Fortran. C, C++,
Ada, and Fortran S-functions are compiled as MEX-files using the mex utility
(see “Building MEX-Files” in the External Interfaces User’s Guide). As with
other MEX-files, they are dynamically linked into MATLAB when needed.

S-functions use a special calling syntax that enables you to interact with
Simulink equation solvers. This interaction is very similar to the interaction
that takes place between the solvers and built-in Simulink blocks. The form
of an S-function is very general and can accommodate continuous, discrete,
and hybrid systems.

S-functions allow you to add your own blocks to Simulink models. You can
create your blocks in MATLAB, C, C++, Fortran, or Ada. By following a set of
simple rules, you can implement your algorithms in an S-function. After you
write your S-function and place its name in an S-Function block (available
in the User-Defined Functions block library), you can customize the user
interface by using masking.

You can use S-functions with Real-Time Workshop®. You can also customize
the code generated by Real-Time Workshop for S-functions by writing a
Target Language Compiler (TLC) file. See “Writing S-Functions for Real-Time
Workshop” in the Real-Time Workshop User’s Guide for more information.

1-2

Using S-Functions in Models

Using S-Functions in Models
To incorporate an S-function into a Simulink model, drag an S-Function block
from the Simulink User-Defined Functions block library into the model.
Then specify the name of the S-function in the S-function name field of the
S-Function block’s dialog box, as illustrated in the following figure.

S−Function

timestwo

Display

2

Constant

1

��
��������	�
����

���
������
���
	
���������������������������������
�������
�������������
���������������
�����	
������������ ����
���

1-3

1 Overview of S-Functions

In this example, the model contains an instance of an S-Function block that
references a C MEX-file having the root name timestwo.

Note If the MATLAB path includes a C MEX-file and an M-file having the
same root name referenced by an S-function block, the S-function block uses
the C MEX-file.

Passing Parameters to S-Functions
The S-function block’s S-function parameters field allows you to specify
parameter values to be passed to the corresponding S-function. To use this
field, you must know the parameters the S-function requires and the order in
which the function requires them. (If you do not know, consult the S-function’s
author, documentation, or source code.) Enter the parameters, separated by a
comma, in the order required by the S-function. The parameter values can be
constants, names of variables defined in the MATLAB or model workspace, or
MATLAB expressions.

The following example illustrates usage of the S-function parameters field
to enter user-defined parameters.

1-4

Using S-Functions in Models

The model in this example incorporates limintm, a sample S-function
that comes with Simulink. The function’s source code resides in
toolbox/simulink/blocks. The limintm function accepts three parameters:
a lower bound, an upper bound, and an initial condition. It outputs the time
integral of the input signal if the time integral is between the lower and upper
bounds, the lower bound if the time integral is less than the lower bound, and
the upper bound if the time integral is greater than the upper bound. The
dialog box in the example specifies a lower and upper bound and an initial
condition of 2, 3, and 2.5, respectively. The scope shows the resulting output
when the input is a sine wave of amplitude 1.

See “Processing S-Function Parameters” on page 2-11 and “Handling Errors”
on page 7-52 for information on how to access user-specified parameters in
an S-function.

You can use the Simulink masking facility to create custom dialog boxes and
icons for your S-function blocks. Masked dialog boxes can make it easier to
specify additional parameters for S-functions. For discussions of additional

1-5

1 Overview of S-Functions

parameters and masking, see “Creating Masked Subsystems” in the Using
Simulink documentation.

When to Use an S-Function
The most common use of S-functions is to create custom Simulink blocks. You
can use S-functions for a variety of applications, including

• Adding new general purpose blocks to Simulink

• Adding blocks that represent hardware device drivers

• Incorporating existing C code into a simulation

• Describing a system as a set of mathematical equations

• Using graphical animations (see the inverted pendulum demo, penddemo)

An advantage of using S-functions is that you can build a general-purpose
block that you can use many times in a model, varying parameters with each
instance of the block.

1-6

How S-Functions Work

How S-Functions Work
To create S-functions, you need to know how S-functions work. Understanding
how S-functions work, in turn, requires understanding how Simulink
simulates a model, and this, in turn requires an understanding of the
mathematics of blocks. This section therefore begins by explaining the
mathematical relationship between a block’s inputs, states, and outputs.

Mathematics of Simulink Blocks
A Simulink block consists of a set of inputs, a set of states, and a set of
outputs, where the outputs are a function of the sample time, the inputs,
and the block’s states.

The following equations express the mathematical relationships between
the inputs, outputs, and the states.

Simulation Stages
Execution of a Simulink model proceeds in stages. First comes the
initialization phase. In this phase, Simulink incorporates library blocks
into the model, propagates widths, data types, and sample times, evaluates
block parameters, determines block execution order, and allocates memory.
Then Simulink enters a simulation loop, where each pass through the
loop is referred to as a simulation step. During each simulation step,
Simulink executes each of the model’s blocks in the order determined during

1-7

1 Overview of S-Functions

initialization. For each block, Simulink invokes functions that compute the
block’s states, derivatives, and outputs for the current sample time. This
continues until the simulation is complete.

The following figure illustrates the stages of a simulation.

How Simulink Performs Simulation

1-8

How S-Functions Work

S-Function Callback Methods
An S-function comprises a set of S-function callback methods that perform
tasks required at each simulation stage. During simulation of a model, at each
simulation stage, Simulink calls the appropriate methods for each S-Function
block in the model. Tasks performed by S-function methods include

• Initialization — Prior to the first simulation loop, Simulink initializes the
S-function. During this stage, Simulink

- Initializes the SimStruct, a simulation structure that contains
information about the S-function

- Sets the number and dimensions of input and output ports

- Sets the block sample times

- Allocates storage areas and the sizes array

• Calculation of next sample hit — If you’ve created a variable sample time
block, this stage calculates the time of the next sample hit; that is, it
calculates the next step size.

• Calculation of outputs in the major time step — After this call is complete,
all the output ports of the blocks are valid for the current time step.

• Update of discrete states in the major time step — In this call, all blocks
should perform once-per-time-step activities such as updating discrete
states for next time around the simulation loop.

• Integration — This applies to models with continuous states and/or
nonsampled zero crossings. If your S-function has continuous states,
Simulink calls the output and derivative portions of your S-function at
minor time steps. This is so Simulink can compute the states for your
S-function. If your S-function (C MEX only) has nonsampled zero crossings,
Simulink calls the output and zero-crossings portions of your S-function at
minor time steps so that it can locate the zero crossings.

Note See “How Simulink Works” in the Using Simulink documentation
for an explanation of major and minor time steps.

1-9

1 Overview of S-Functions

Implementing S-Functions
You can implement an S-function as either an M-file or a MEX-file. The
following sections describe these alternative implementations and discuss
the advantages of each.

M-File S-Functions
An M-file S-function consists of a MATLAB function of the following form:

[sys,x0,str,ts]=f(t,x,u,flag,p1,p2,...)

where f is the S-function’s name, t is the current time, x is the state vector
of the corresponding S-function block, u is the block’s inputs, flag indicates
a task to be performed, and p1, p2, ... are the block’s parameters. During
simulation of a model, Simulink repeatedly invokes f, using flag to indicate
the task to be performed for a particular invocation. Each time the S-function
performs the task, it returns the result in a structure having the format
shown in the syntax example.

A template implementation of an M-file S-function, sfuntmpl.m, resides in
matlabroot/toolbox/simulink/blocks. The template consists of a top-level
function and a set of skeleton subfunctions, each of which corresponds to
a particular value of flag. The top-level function invokes the subfunction
indicated by flag. The subfunctions, called S-function callback methods,
perform the tasks required of the S-function during simulation. The following
table lists the contents of an M-file S-function that follows this standard
format.

Simulation Stage S-Function Routine Flag

Initialization mdlInitializeSizes flag = 0

Calculation of next
sample hit (variable
sample time block only)

mdlGetTimeOfNextVarHit flag = 4

Calculation of outputs mdlOutputs flag = 3

Update of discrete
states

mdlUpdate flag = 2

1-10

Implementing S-Functions

Simulation Stage S-Function Routine Flag

Calculation of
derivatives

mdlDerivatives flag = 1

End of simulation tasks mdlTerminate flag = 9

We recommend that you follow the structure and naming conventions of the
template when creating M-file S-functions. This makes it easier for others to
understand and maintain M-file S-functions that you create. See Chapter 2,
“Writing S-Functions in M” for information on creating M-file S-functions.

MEX-File S-Functions
Like an M-file S-function, a MEX-file function consists of a set of callback
routines that Simulink invokes to perform various block-related tasks during
a simulation. Significant differences exist, however. For one, MEX-file
functions are implemented in a different programming language: C, C++,
Ada, or Fortran. Also, Simulink invokes MEX S-function routines directly
instead of via a flag value as with M-file S-functions. Because Simulink
invokes the functions directly, MEX-file functions must follow standard
naming conventions specified by Simulink.

Other key differences exist. For one, the set of callback functions that
MEX functions can implement is much larger than can be implemented by
M-file functions. A MEX function also has direct access to the internal data
structure, called the SimStruct, that Simulink uses to maintain information
about the S-function. MEX-file functions can also use the MATLAB MEX-file
API to access the MATLAB workspace directly.

A C MEX-file S-function template, called sfuntmpl_basic.c, resides in
the matlabroot/simulink/src directory. The template contains skeleton
implementations of all the required and optional callback routines that a C
MEX-file S-function can implement. For a more amply commented version of
the template, see sfuntmpl_doc.c in the same directory.

MEX-File Versus M-File S-Functions
M-file and MEX-file S-functions each have advantages. The advantage of
M-file S-functions is speed of development. Developing M-file S-functions
avoids the time-consuming compile-link-execute cycle required by

1-11

1 Overview of S-Functions

development in a compiled language. M-file S-functions also have easier
access to MATLAB and toolbox functions.

The primary advantage of MEX-file functions is versatility. The larger
number of callbacks and access to the SimStruct enable MEX-file functions
to implement functionality not accessible to M-file S-functions. Such
functionality includes the ability to handle data types other than double,
complex inputs, matrix inputs, and so on.

1-12

S-Function Concepts

S-Function Concepts
Understanding these key concepts should enable you to build S-functions
correctly:

• Direct feedthrough

• Dynamically sized inputs

• Setting sample times and offsets

Direct Feedthrough
Direct feedthrough means that the output (or the variable sample time
for variable sample time blocks) is controlled directly by the value of an
input port. A good rule of thumb is that an S-function input port has direct
feedthrough if

• The output function (mdlOutputs or flag==3) is a function of the input u.
That is, there is direct feedthrough if the input u is accessed in mdlOutputs.
Outputs can also include graphical outputs, as in the case of an XY Graph
scope.

• The “time of next hit” function (mdlGetTimeOfNextVarHit or flag==4) of a
variable sample time S-function accesses the input u.

An example of a system that requires its inputs (i.e., has direct feedthrough) is
the operation , where u is the input, k is the gain, and y is the output.

An example of a system that does not require its inputs (i.e., does not have
direct feedthrough) is this simple integration algorithm

Outputs:

Derivative:

where x is the state, is the state derivative with respect to time, u is
the input, and y is the output. Note that is the variable that Simulink
integrates. It is very important to set the direct feedthrough flag correctly
because it affects the execution order of the blocks in your model and is used
to detect algebraic loops.

1-13

1 Overview of S-Functions

Dynamically Sized Arrays
S-functions can be written to support arbitrary input dimensions. In this case,
the actual input dimensions are determined dynamically when a simulation
is started by evaluating the dimensions of the input vector driving the
S-function. The input dimensions can also be used to determine the number of
continuous states, the number of discrete states, and the number of outputs.

M-file S-functions can have only one input port and that input port can
accept only one-dimensional (vector) signals. However, the signals can be of
varying widths. Within an M-file S-function, to indicate that the input width
is dynamically sized, specify a value of -1 for the appropriate fields in the
sizes structure, which is returned during the mdlInitializeSizes call.
You can determine the actual input width when your S-function is called by
using length(u). If you specify a width of 0, the input port is removed from
the S-function block.

A C S-function can have multiple I/O ports and the ports can have different
dimensions. The number of dimensions and the size of each dimension can
be determined dynamically.

For example, the following illustration shows two instances of the same
S-Function block in a model.

The upper S-Function block is driven by a block with a three-element output
vector. The lower S-Function block is driven by a block with a scalar output.
By specifying that the S-Function block has dynamically sized inputs, the
same S-function can accommodate both situations. Simulink automatically
calls the block with the appropriately sized input vector. Similarly, if other
block characteristics, such as the number of outputs or the number of discrete
or continuous states, are specified as dynamically sized, Simulink defines
these vectors to be the same length as the input vector.

1-14

S-Function Concepts

C S-functions give you more flexibility in specifying the widths of input and
output ports. See “Creating Input and Output Ports” on page 7-12.

Setting Sample Times and Offsets
Both M-file and C MEX S-functions allow a high degree of flexibility in
specifying when an S-function executes. Simulink provides the following
options for sample times:

• Continuous sample time — For S-functions that have continuous states
and/or nonsampled zero crossings (see “How Simulink Works” in Using
Simulink documentation for explanation of zero crossings). For this type of
S-function, the output changes in minor time steps.

• Continuous but fixed in minor time step sample time — For S-functions
that need to execute at every major simulation step, but do not change
value during minor time steps.

• Discrete sample time — If your S-Function block’s behavior is a function
of discrete time intervals, you can define a sample time to control when
Simulink calls the block. You can also define an offset that delays each
sample time hit. The value of the offset cannot exceed the corresponding
sample time.

A sample time hit occurs at time values determined by the formula

TimeHit = (n * period) + offset

where n, an integer, is the current simulation step. The first value of n is
always zero.

If you define a discrete sample time, Simulink calls the S-function
mdlOutput and mdlUpdate routines at each sample time hit (as defined in
the above equation).

• Variable sample time — A discrete sample time where the intervals between
sample hits can vary. At the start of each simulation step, S-functions with
variable sample times are queried for the time of the next hit.

• Inherited sample time — Sometimes an S-Function block has no inherent
sample time characteristics (that is, it is either continuous or discrete,
depending on the sample time of some other block in the system). You can

1-15

1 Overview of S-Functions

specify that the block’s sample time is inherited. A simple example of this
is a Gain block that inherits its sample time from the block driving it.

A block can inherit its sample time from

- The driving block

- The destination block

- The fastest sample time in the system

To set a block’s sample time as inherited, use -1 in M-file S-functions and
INHERITED_SAMPLE_TIME in C S-functions as the sample time. For more
information on the propagation of sample times, see “Displaying Sample
Time Colors” in Using Simulink.

S-functions can be either single or multirate; a multirate S-function has
multiple sample times.

Sample times are specified in pairs in this format: [sample_time,
offset_time]. The valid sample time pairs are

[CONTINUOUS_SAMPLE_TIME, 0.0]
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
[discrete_sample_time_period, offset]
[VARIABLE_SAMPLE_TIME, 0.0]

where

CONTINUOUS_SAMPLE_TIME = 0.0
FIXED_IN_MINOR_STEP_OFFSET = 1.0
VARIABLE_SAMPLE_TIME = -2.0

and the italics indicate that a real value is required.

Alternatively, you can specify that the sample time is inherited from the
driving block. In this case the S-function can have only one sample time pair

[INHERITED_SAMPLE_TIME, 0.0]

or

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

1-16

S-Function Concepts

where

INHERITED_SAMPLE_TIME = -1.0

The following guidelines might help you specify sample times:

• A continuous S-function that changes during minor integration steps
should register the [CONTINUOUS_SAMPLE_TIME, 0.0] sample time.

• A continuous S-function that does not change during minor
integration steps should register the [CONTINUOUS_SAMPLE_TIME,
FIXED_IN_MINOR_STEP_OFFSET] sample time.

• A discrete S-function that changes at a specified rate should register the
discrete sample time pair, [discrete_sample_time_period, offset],
where

discrete_sample_period > 0.0

and

0.0 ≤ offset < discrete_sample_period

• A discrete S-function that changes at a variable rate should register the
variable step discrete sample time.

[VARIABLE_SAMPLE_TIME, 0.0]

The mdlGetTimeOfNextVarHit routine is called to get the time of the next
sample hit for the variable step discrete task.

If your S-function has no intrinsic sample time, you must indicate that your
sample time is inherited. There are two cases:

• An S-function that changes as its input changes, even during minor
integration steps, should register the [INHERITED_SAMPLE_TIME, 0.0]
sample time.

• An S-function that changes as its input changes, but doesn’t change
during minor integration steps (that is, remains fixed during

1-17

1 Overview of S-Functions

minor time steps), should register the [INHERITED_SAMPLE_TIME,
FIXED_IN_MINOR_STEP_OFFSET] sample time.

The Scope block is a good example of this type of block. This block should
run at the rate of its driving block, either continuous or discrete, but
should never run in minor steps. If it did, the scope display would show
the intermediate computations of the solver rather than the final result at
each time point.

1-18

S-Function Examples

S-Function Examples
Simulink comes with a library of S-function examples.

To run an example:

1 Enter sfundemos at the MATLAB command line.

MATLAB displays the S-function demo library.

Each block represents a category of S-function examples.

2 Click a category to display the examples that it includes.

1-19

1 Overview of S-Functions

3 Click a block to open and run the example that it represents.

It might be helpful to examine some sample S-functions as you read the next
chapters. Code for the examples is stored in these subdirectories under the
MATLAB root directory:

M-files toolbox/simulink/blocks

C, C++, and Fortran simulink/src

Ada simulink/ada/examples

1-20

S-Function Examples

M-File S-Function Examples
The simulink/blocks directory contains many M-file S-functions. Consider
starting off by looking at these files.

Filename Description

csfunc.m Define a continuous system in
state-space format.

dsfunc.m Define a discrete system in
state-space format.

vsfunc.m Illustrates how to create a variable
sample time block. This block
implements a variable step delay in
which the first input is delayed by
an amount of time determined by
the second input.

mixedm.m Implement a hybrid system
consisting of a continuous integrator
in series with a unit delay.

vdpm.m Implement the Van der Pol equation
(similar to the demo model, vdp).

simom.m Example state-space M-file
S-function with internal A, B, C,
and D matrices. This S-function
implements

dx/dt = Ax + By
y = Cx + Du

where x is the state vector, u is the
input vector, and y is the output
vector. The A, B, C, and D matrices
are embedded in the M-file.

1-21

1 Overview of S-Functions

Filename Description

simom2.m Example state-space M-file
S-function with external A, B, C,
and D matrices. The state-space
structure is the same as in simom.m,
but the A, B, C, and D matrices are
provided externally as parameters
to this file.

limintm.m Implement a continuous limited
integrator where the output is
bounded by lower and upper bounds
and includes initial conditions.

sfun_varargm.m Example M-file S-function showing
how to use the MATLAB vararg
facility.

vlimintm.m Example of a continuous limited
integrator S-function. This
illustrates how to use the size entry
of -1 to build an S-function that can
accommodate a dynamic input/state
width.

vdlmintm.m Example of a discrete limited
integrator S-function. This example
is identical to vlimint.m, except that
the limited integrator is discrete.

1-22

S-Function Examples

C S-Function Examples
The simulink/src directory also contains examples of C MEX S-functions,
many of which have an M-file S-function counterpart. These C MEX
S-functions are listed in this table.

Filename Description

barplot.c Access Simulink signals without
using the standard block inputs.

csfunc.c Example C MEX S-function for
defining a continuous system.

dlimintc.c Implement a discrete-time limited
integrator.

dsfunc.c Example C MEX S-function for
defining a discrete system.

fcncallgen.c Execute function-call subsystems n
times at the designated rate (sample
time).

limintc.c Implement a limited integrator.

mixedm.c Implement a hybrid dynamic system
consisting of a continuous integrator
(1/s) in series with a unit delay (1/z).

mixedmex.c Implement a hybrid dynamic system
with a single output and two inputs.

quantize.c Example MEX-file for a vectorized
quantizer block. Quantizes the
input into steps as specified by the
quantization interval parameter, q.

sdotproduct Compute dot product
(multiply-accumulate) of two
real or complex vectors.

sftable2.c Two-dimensional table lookup in
S-function form.

1-23

1 Overview of S-Functions

Filename Description

sfun_atol.c Set different absolute tolerances for
each continuous state.

sfun_cplx.c Complex signal add with one input
port and one parameter.

sfun_directlook.c Direct 1-D lookup.

sfun_dtype_io.c Example of the use of Simulink data
types for inputs and outputs.

sfun_dtype_param.c Example of the use of Simulink data
types for parameters.

sfun_dynsize.c Simple example of how to size
outputs of an S-function dynamically.

sfun_errhdl.c Simple example of how to
check parameters using the
mdlCheckParams S-function routine.

sfun_fcncall.c Example of an S-function that is
configured to execute function-call
subsystems on the first and second
output elements.

sfun_frmad.c Frame-based A/D converter.

sfun_frmda.c Frame-based D/A converter.

sfun_frmdft.c Multichannel frame-based
Discrete-Fourier transformation
(and its inverse).

sfun_frmunbuff.c Frame-based unbuffer block.

sfun_multiport.c S-function that has multiple input
and output ports.

sfun_manswitch.c Manual switch.

sfun_matadd.c Matrix add with one input port, one
output port, and one parameter.

sfun_multirate.c Demonstrate how to specify
port-based sample times.

1-24

S-Function Examples

Filename Description

sfun_psbbreaker.c Implement the logic for the breaker
block in the Power System Blockset.

sfun_psbcontc.c Continuous implementation of
state-space system.

sfun_psbdiscc.c Discrete implementation of
state-space system.

sfun_runtime1.c Run-time parameter example.

sfun_runtime2.c Run-time parameter example.

sfun_zc.c Demonstrate use of nonsampled zero
crossings to implement abs(u). This
S-function is designed to be used
with a variable-step solver.

sfun_zc_sat.c Saturation example that uses zero
crossings.

sfunmem.c A one-integration-step delay and
hold memory function.

simomex.c Implements a single-input,
two-output state-space dynamic
system described by these
state-space equations

dx/dt = Ax + Bu
y = Cx + Du

where x is the state vector, u is
vector of inputs, and y is the vector
of outputs.

1-25

1 Overview of S-Functions

Filename Description

stspace.c Implement a set of state-space
equations. You can turn this
into a new block by using the
S-Function block and mask facility.
This example MEX-file performs
the same function as the built-in
State-Space block. This is an
example of a MEX-file where the
number of inputs, outputs, and states
is dependent on the parameters
passed in from the workspace. Use
this as a template for other MEX-file
systems.

stvctf.c Implement a continuous-time
transfer function whose transfer
function polynomials are passed in
via the input vector. This is useful
for continuous time adaptive control
applications.

stvdtf.c Implement a discrete-time transfer
function whose transfer function
polynomials are passed in via
the input vector. This is useful
for discrete-time adaptive control
applications.

stvmgain.c Time-varying matrix gain.

table3.c 3-D lookup table.

timestwo.c Basic C MEX S-function that doubles
its input.

vdlmintc.c Implement a discrete-time vectorized
limited integrator.

vdpmex.c Implement the Van der Pol equation.

1-26

S-Function Examples

Filename Description

vlimintc.c Implement a vectorized limited
integrator.

vsfunc.c Illustrate how to create a variable
sample time block in Simulink. This
block implements a variable-step
delay in which the first input is
delayed by an amount of time
determined by the second input.

Fortran S-Function Examples
The following table lists sample Fortran S-functions available in the
simulink/src directory.

Filename Description

sfun_timestwo_for.F Sample Level 1 Fortran
representation of a C timestwo
S-function.

sfun_atmos.c
sfun_atmos_sub.F

Calculation of the 1976 standard
atmosphere to 86 km using a Fortran
subroutine.

simomexf.F Sample Level 1 Fortran
representation of the C simomex
S-function.

vdpmexf.F Sample Level 1 Fortran
representation of the C vdpmex
S-function.

1-27

1 Overview of S-Functions

C++ S-Function Examples
The following table lists sample C++ S-functions.

Filename Description

sfun_counter_cpp.cpp Store a C++ object in the pointers
vector PWork.

Ada S-Function Examples
The simulink/ada/examples directory contains the following subdirectories
with examples of S-functions implemented in Ada.

Subdirectory Name Description

matrix_gain Implement a Matrix Gain block.

multi_port Multiport block.

simple_lookup Lookup table. Illustrates use of
a wrapper S-function that wraps
stand-alone Ada code (i.e., Ada
packages and procedures) both for
use with Simulink as an S-function
and directly with Ada code generated
using the Real-Time Workshop Ada
Coder.

times_two Output twice its input.

1-28

2

Writing S-Functions in M

The following sections explain how to use the MATLAB M programming
language to create S-functions.

Introduction (p. 2-2) Introduction to writing S-functions
in the MATLAB M language.

Writing Level-2 M-File S-Functions
(p. 2-3)

Explains how to create M-file
S-functions based on the current
Level-2 M-file S-function application
programming interface (API).

Maintaining Level-1 M-File
S-Functions (p. 2-8)

Provides information on maintaining
Level-1 M-file S-functions developed
for earlier versions of Simulink.

2 Writing S-Functions in M

Introduction
Simulink provides an application programming interface (API) that lets you
create custom blocks whose properties and behavior are defined by M-file
programs called M-file S-functions. The Level-2 M-file S-function API allows
you to create blocks that have all of the features and capabilities of Simulink
built-in blocks, including multiple input and output ports, the ability to accept
vector or matrix signals of any data type supported by Simulink, real or
complex signals, signal frames, and the ability to operate at multiple sample
rates. For information on how to use the API to create custom blocks, see
“Writing Level-2 M-File S-Functions” on page 2-3.

Note This version of Simulink also supports a predecessor API, called Level
1, for writing M-file S-functions. This is done to ensure that Simulink can
simulate models that use M-file S-function blocks developed for use with
earlier Simulink releases (see “Maintaining Level-1 M-File S-Functions”
on page 2-8). You should not use the Level-1 API to develop new M-file
S-functions. Instead, you should use the Level-2 API.

2-2

Writing Level-2 M-File S-Functions

Writing Level-2 M-File S-Functions
The Level-2 M-file S-function application programming interface (API) allows
you to use the MATLAB M language to create full-fledged custom blocks
having multiple inputs and outputs and capable of handling any type of signal
produced by a Simulink model, including matrix and frame signals of any
data type. The Level-2 M-File S-Function API corresponds closely to the API
for creating C MEX-file S-functions. Much of the documentation for creating C
MEX-file S-functions (see Chapter 3, “Writing S-Functions in C” and Chapter
7, “Implementing Block Features”) applies also to Level-2 M-file S-functions.
To avoid duplication, this section focuses on providing information that is
specific to writing Level-2 M-file S-functions.

About Level-2 M-File S-Functions
First, a word about Level-2 M-File S-functions themselves. A Level-2 M-file
S-function is an M-file that defines the properties and behavior of an instance
of a Level-2 M-File S-Function block that references the M-file in a Simulink
model. The M-file itself comprises a set of callback methods (see “Callback
Methods” on page 2-4) that Simulink invokes when updating or simulating
the model. The callback methods perform the actual work of initializing and
computing the outputs of the block defined by the S-function.

To facilitate these tasks, Simulink passes a run-time object to the callback
methods as an argument. The run-time object effectively serves as an M proxy
for the S-function block, allowing the callback method to set and access the
block’s properties during simulation or model updating (see “Run-time Object”
on page 2-6 for more information).

Level-2 M-File S-Function API
The Level-2 M-File S-function API defines the signatures and general purpose
of the callback methods that constitute a Level-2 M-file S-function. The
S-function itself provides the implementations of these callback methods.
The implementations in turn determine the block’s attributes (e.g., ports,
parameters, and states) and behavior (e.g., the block’s outputs as a function
of time and the block’s inputs, states, and parameters). By creating an
S-function with an appropriate set of callback implementations, you can
define a block type that meets the specific requirements of your application.

2-3

2 Writing S-Functions in M

M-File S-Function Demos
Simulink provides a set of self-documenting demo models that illustrate
creation and usage of Level-2 M-file S-functions. Enter sfundemos at the
MATLAB command line to view the demos.

S-Function Template
To give you a head start on creating Level-2 M-file S-functions, Simulink
provides an annotated M-file template containing skeleton implementation
of the callbacks defined by the Level-2 M-File S-function API. The template
resides at

matlabroot/toolbox/simulink/blocks/msfuntmpl.m

To create an M-file S-function, make a copy of the template and edit the copy
as necessary to reflect the desired behavior of the S-function you are creating.
The comments in the template explain how to do this.

Instantiating a Level-2 M-File S-Function
To create an instance of the S-function in a model, first create an instance
of the Level-2 M-File S-Function block in the model. Then open the block’s
parameter dialog box and enter the name of the M-file that implements your
S-function in the dialog box’s M-file name field. If your function uses any
additional parameters, enter their values as a comma-separated list in the
dialog box’s Parameters field.

Generating Code from a Level-2 M-File S-Function
Generating code from a model containing a Level-2 M-file S-function requires
that you provide a corresponding TLC file. You do not need a TLC file to
run a model in accelerated mode as the Simulink Accelerator runs Level-2
M-file S-functions in interpreted mode.

Callback Methods
The Level-2 M-file S-function API specifies a set of callback methods that an
M-file S-function must implement and others that it may choose to omit,
depending on the requirements of the block that the S-function defines. The
methods defined by the Level-2 M-file S-function API generally correspond

2-4

Writing Level-2 M-File S-Functions

to that of similarly named methods defined by the C MEX-file S-function
API. For information on what each method does, see “How Simulink Works”
in “Using Simulink” and Chapter 8, “S-Function Callback Methods —
Alphabetical List”.

The following table lists the Level-2 M-file S-function callback methods and
their C MEX-file counterparts.

Level-2 M-File Method C MEX-File Method

setup method (see “Setup Method”
on page 2-6)

mdlInitializeSizes

CheckParameters mdlCheckParameters

Derivatives mdlDerivatives

Disable mdlDisable

Enable mdlEnable

InitializeCondition mdlInitializeConditions

Outputs mdlOutputs

PostPropagationSetup mdlSetWorkWidths

ProcessParameters mdlProcessParameters

SetInputPortComplexSignal mdlSetInputPortComplexSignal

SetInputPortDataType mdlSetInputPortDataType

SetInputPortDimensions mdlSetInputPortDimensionInfo

SetInputPortSampleTime mdlSetInputPortSampleTime

SetInputPortSamplingMode mdlSetInputPortFrameData

SetOutputPortComplexSignal mdlSetOutputPortComplexSignal

SetOutputPortDataType mdlSetOutputPortDataType

SetOutputPortDimensions mdlSetOutputPortDimensionInfo

SetOutputPortSampleTime mdlSetOutputPortSampleTime

Start mdlStart

Update mdlUpdate

2-5

2 Writing S-Functions in M

Level-2 M-File Method C MEX-File Method

WriteRTW mdlRTW

ZeroCrossings mdlZeroCrossings

Setup Method
The body of the setup method of a Level-2 M-file S-function initializes
instances of the corresponding Level-2 M-File S-Function block in a model.
In this respect, the main function is similar to the mdlInitializeSizes
callback method implemented by C MEX S-functions. Setup tasks that the
main function performs include:

• Setting up the number of input and output ports of the block.

• Setting attributes such as dimensions, data types, complexity, and sample
times for these ports.

• Setting up the number of parameters and checking for the validity of these
parameters.

• Registering the various block methods using the handles for other
local functions in the M-file, using the RegBlockMethod method of the
S-function block’s run-time object passed to it. See the documentation for
Simulink.MSFcnRunTimeBlock for information on using this method.

Run-time Object
When Simulink invokes a Level-2 M-file S-function callback method, it passes
an instance of Simulink.MSFcnRunTimeBlock class to the method as an
argument. This instance, known as the S-function block’s run-time object,
serves the same purpose for Level-2 M-file S-function callback methods as the
SimStruct structure serves for C MEX-file S-function callback methods. It
enables the method to provide and obtain information about various elements
of the block: ports, parameters, states, and work vectors. The method does
this by getting or setting properties or invoking methods of the block run-time
object. See the documentation for Simulink.MSFcnRunTimeBlock class for
information on getting and setting the run-time object’s properties and
invoking its methods.

2-6

Writing Level-2 M-File S-Functions

Note Other M-file programs besides M-file S-functions can use run-time
objects to obtain information about an M-file S-function or other blocks in a
model that is simulating. See “Accessing Block Data During Simulation” in
“Using Simulink” for more information.

2-7

2 Writing S-Functions in M

Maintaining Level-1 M-File S-Functions

Note The information provided in this section is intended only for use in
maintaining existing M-file S-functions based on Level-1 API. You should use
the more capable Level-2 API to develop new M-file S-functions (see “Writing
Level-2 M-File S-Functions” on page 2-3).

A Level-1 M-file S-function consists of a MATLAB function of the following
form

[sys,x0,str,ts]=f(t,x,u,flag,p1,p2,...)

where f is the name of the S-function. During simulation of a model, Simulink
repeatedly invokes f, using the flag argument to indicate the task (or tasks)
to be performed for a particular invocation. Each time the S-function performs
the task and returns the results in an output vector.

A template implementation of an M-file S-function, sfuntmpl.m, resides in
matlabroot/toolbox/simulink/blocks. The template consists of a top-level
function and a set of skeleton subfunctions, called S-function callback
methods, each of which corresponds to a particular value of flag. The top-level
function invokes the subfunction indicated by flag. The subfunctions perform
the actual tasks required of the S-function during simulation.

S-Function Arguments
Simulink passes the following arguments to an S-function:

t Current time

x State vector

u Input vector

flag Integer value that indicates the task to be performed by
the S-function

The following table describes the values that flag can assume and lists the
corresponding S-function method for each value.

2-8

Maintaining Level-1 M-File S-Functions

Flag Argument

Flag S-Function Routine Description

0 mdlInitializeSizes Defines basic S-Function
block characteristics,
including sample times,
initial conditions of
continuous and discrete
states, and the sizes array.

1 mdlDerivatives Calculates the derivatives
of the continuous state
variables.

2 mdlUpdate Updates discrete states,
sample times, and major
time step requirements.

3 mdlOutputs Calculates the outputs of
the S-function.

4 mdlGetTimeOfNextVarHit Calculates the time of the
next hit in absolute time.
This routine is used only
when you specify a variable
discrete-time sample time
in mdlInitializeSizes.

9 mdlTerminate Performs any necessary
end-of-simulation tasks.

S-Function Outputs
An M-file returns an output vector containing the following elements:

• sys, a generic return argument. The values returned depend on the flag
value. For example, for flag = 3, sys contains the S-function outputs.

• x0, the initial state values (an empty vector if there are no states in the
system). x0 is ignored, except when flag = 0.

• str, reserved for future use. M-file S-functions must set this to the empty
matrix, [].

2-9

2 Writing S-Functions in M

• ts, a two-column matrix containing the sample times and offsets of
the block (see “Specifying Sample Time” in the “Using Simulink” for
information on how to specify a block’s sample time and offset).

For example, if you want your S-function to run at every time step
(continuous sample time), set ts to [0 0]. If you want your S-function
to run at the same rate as the block to which it is connected (inherited
sample time), set ts to [-1 0]. If you want it to run every 0.25 seconds
(discrete sample time) starting at 0.1 seconds after the simulation start
time, set ts to [0.25 0.1].

You can create S-functions that do multiple tasks, each at a different
sample rate (i.e., a multirate S-function). In this case, ts should specify
all the sample rates used by your S-function in ascending order by sample
time. For example, suppose your S-function performs one task every 0.25
second starting from the simulation start time and another task every 1
second starting 0.1 second after the simulation start time. In this case,
your S-function should set ts equal to [.25 0; 1.0 .1]. This will cause
Simulink to execute the S-function at the following times: [0 0.1 0.25
0.5 0.75 1 1.1 ...]. Your S-function must decide at every sample time
which task to perform at that sample time.

You can also create an S-function that performs some tasks continuously
(i.e., at every time step) and others at discrete intervals.

Defining S-Function Block Characteristics
For Simulink to recognize an M-file S-function, you must provide it with
specific information about the S-function. This information includes the
number of inputs, outputs, states, and other block characteristics.

To give Simulink this information, call the simsizes function at the beginning
of mdlInitializeSizes.

sizes = simsizes;

This function returns an uninitialized sizes structure. You must load the
sizes structure with information about the S-function. The table below lists
the fields of the sizes structure and describes the information contained
in each field.

2-10

Maintaining Level-1 M-File S-Functions

Fields in the sizes Structure

Field Name Description

sizes.NumContStates Number of continuous states

sizes.NumDiscStates Number of discrete states

sizes.NumOutputs Number of outputs

sizes.NumInputs Number of inputs

sizes.DirFeedthrough Flag for direct feedthrough

sizes.NumSampleTimes Number of sample times

After you initialize the sizes structure, call simsizes again:

sys = simsizes(sizes);

This passes the information in the sizes structure to sys, a vector that holds
the information for use by Simulink.

Processing S-Function Parameters
When invoking an M-file S-function, Simulink always passes the standard
block parameters, t, x, u, and flag, to the S-function as function arguments.
Simulink can pass additional block-specific parameters specified by the user
to the S-function. The user specifies the parameters in the S-function
parameters field of the S-function’s block parameter dialog (see “Passing
Parameters to S-Functions” on page 1-4). If the block dialog specifies
additional parameters, Simulink passes the parameters to the S-function
as additional function arguments. The additional arguments follow the
standard arguments in the S-function argument list in the order in which
the corresponding parameters appear in the block dialog. You can use this
block-specific S-function parameter capability to allow the same S-function
to implement various processing options. See the limintm.m example in the
toolbox/simulink/blocks directory for an example of an S-function that
uses block-specific parameters in this way.

2-11

2 Writing S-Functions in M

2-12

3

Writing S-Functions in C

The following sections explain how to use the C programming language to
create S-functions.

Introduction (p. 3-3) Overview of writing a C S-function.

Building S-Functions Automatically
(p. 3-6)

How to use the S-Function Builder to
generate S-functions automatically
from specifications that you supply.

S-Function Builder Dialog Box
(p. 3-11)

Describes the S-Function Builder
dialog box

Example of a Basic C MEX
S-Function (p. 3-35)

Illustrates the code needed to create
a C S-function.

Templates for C S-Functions (p. 3-41) Describes code templates that you
can use as starting points for writing
your own C S-functions.

Legacy Code Tool (p. 3-45) How to use the Legacy Code Tool to
generate S-functions automatically
from existing C code.

How Simulink Interacts with C
S-Functions (p. 3-59)

Describes how Simulink interacts
with a C S-function. This is
information that you need to know
in order to create and debug your
own C S-functions.

3 Writing S-Functions in C

Writing Callback Methods (p. 3-67) How to write methods that Simulink
calls as it executes your S-function.

Converting Level 1 C MEX
S-Functions to Level 2 (p. 3-68)

How to convert S-functions written
for earlier releases of Simulink to
work with the current version.

3-2

Introduction

Introduction
A C MEX-file that defines an S-Function block must provide information
about the model to Simulink during the simulation. As the simulation
proceeds, Simulink, the ODE solver, and the C MEX-file interact to perform
specific tasks. These tasks include defining initial conditions and block
characteristics, and computing derivatives, discrete states, and outputs.

As with M-file S-functions, Simulink interacts with a C MEX-file S-function
by invoking callback methods that the S-function implements. Each method
performs a predefined task, such as computing block outputs, required to
simulate the block whose functionality the S-function defines. Simulink
defines in a general way the task of each callback. The S-function is free to
perform the task according to the functionality it implements. For example,
Simulink specifies that the S-function’s mdlOutput method must compute that
block’s outputs at the current simulation time. It does not specify what those
outputs must be. This callback-based API allows you to create S-functions,
and hence custom blocks, of any desired functionality.

The set of callback methods, hence functionality, that C MEX-files can
implement is much larger than that available for M-file S-functions.
See Chapter 8, “S-Function Callback Methods — Alphabetical List” for
descriptions of the callback methods that a C MEX-file S-function can
implement. Unlike M-file S-functions, C MEX-files can access and modify
the data structure that Simulink uses internally to store information about
the S-function. The ability to implement a broader set of callback methods
and to access internal data structures allows C MEX-files to implement a
wider set of block features, such as the ability to handle matrix signals and
multiple data types.

C MEX-file S-functions are required to implement only a small subset of the
callback methods that Simulink defines. If your block does not implement a
particular feature, such as matrix signals, you are free to omit the callback
methods required to implement a feature. This allows you to create simple
blocks very quickly.

The general format of a C MEX S-function is shown below:

#define S_FUNCTION_NAME your_sfunction_name_here
#define S_FUNCTION_LEVEL 2

3-3

3 Writing S-Functions in C

#include "simstruc.h"

static void mdlInitializeSizes(SimStruct *S)
{
}

<additional S-function routines/code>

static void mdlTerminate(SimStruct *S)
{
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a

MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration

function */
#endif

mdlInitializeSizes is the first routine Simulink calls when interacting with
the S-function. Simulink subsequently invokes other S-function methods (all
starting with mdl). At the end of a simulation, Simulink calls mdlTerminate.

Creating C MEX S-Functions
You can create C MEX S-functions using any of the following approaches:

• Handcrafted S-function — You can write a C MEX S-function from
scratch. “Example of a Basic C MEX S-Function” on page 3-35 provides a
step-by-step example of how to write a simple S-function from scratch.
See “Templates for C S-Functions” on page 3-41 for a complete skeleton
implementation of a C MEX S-function that you can use as a starting point
for creating your own S-functions.

• S-Function Builder — This block builds a C MEX S-function from
specifications and code fragments that you supply using a graphical user
interface. This eliminates the need for you to write S-functions from
scratch. See “Building S-Functions Automatically” on page 3-6 for more
information about the S-Function Builder.

3-4

Introduction

• Legacy Code Tool — This utility builds a C MEX S-function from existing
C code and specifications that you supply using MATLAB M-code. See
“Legacy Code Tool” on page 3-45 for more information about integrating
legacy C code with Simulink.

Each of these approaches involves a tradeoff between the ease of writing an
S-function and the Simulink features supported by an S-function. Although
handcrafted S-functions support the widest range of Simulink features, they
can be difficult to write. The S-Function Builder block simplifies the task of
writing C MEX S-functions but supports fewer Simulink features. The Legacy
Code Tool provides the easiest approach to creating C MEX S-functions from
existing C code but supports the fewest Simulink features.

3-5

3 Writing S-Functions in C

Building S-Functions Automatically
The S-Function Builder is a Simulink block that builds an S-function from
specifications and C code that you supply. The S-Function Builder also serves
as a wrapper for the generated S-function in models that use the S-function.
This section explains how to use the S-Function Builder to build simple C
MEX S-functions.

Note For examples of using the S-Function Builder to build S-functions,
see the “C-file S-functions” section of the S-function demos provided with
Simulink. To display the demos, enter sfundemos at the MATLAB command
line (see “S-Function Examples” on page 1-19 for more information).

To build an S-function with the S-Function Builder:

1 Set the MATLAB current directory to the directory in which you want to
create the S-function.

Note This directory must be on the MATLAB path.

2 Create a new Simulink model.

3 Copy an instance of the S-Function Builder block from the Simulink
User-Defined Functions library into the new model.

3-6

Building S-Functions Automatically

4 Double-click the block to open the S-Function Builder dialog box (see
“S-Function Builder Dialog Box” on page 3-11).

3-7

3 Writing S-Functions in C

5 Use the specification and code entry panes on the S-Function Builder dialog
box to enter information and custom source code required to tailor the
generated S-function to your application (see “S-Function Builder Dialog
Box” on page 3-11).

6 If you have not already done so, configure the MATLAB mex command to
work on your system.

3-8

Building S-Functions Automatically

To configure the mex command, type mex -setup at the MATLAB command
line.

7 Click Build on the dialog box to start the build process.

Simulink builds a MEX-file that implements the specified S-function and
saves the file in the current directory (see “How the S-Function Builder
Builds an S-Function” on page 3-9).

8 Save the model containing the S-Function Builder block.

Deploying the Generated S-Function
To use the generated S-function in another model, first check to ensure that
the directory containing the generated S-function is on the MATLAB path.
Then copy the S-Function Builder block from the model used to create the
S-function into the target model and set its parameters, if necessary, to the
values required by the target model.

How the S-Function Builder Builds an S-Function
The S-Function Builder builds an S-function as follows. First, it generates
the following source files in the current directory:

• sfun.c

where sfun is the name of the S-function that you specified in the
S-function name field of the S-Function Builder’s dialog box. This file
contains the C source code representation of the standard portions of the
generated S-function.

• sfun_wrapper.c

This file contains the custom code that you entered in the S-Function
Builder dialog box.

• sfun.tlc

This file permits Simulink to run the generated S-function in accelerated
mode and Real-Time Workshop to include this S-function in the code it
generates.

3-9

3 Writing S-Functions in C

After generating the S-function source code, the S-Function Builder uses the
MATLAB mex command to build the MEX-file representation of the S-function
from the generated source code and any external custom source code and
libraries that you specified.

3-10

S-Function Builder Dialog Box

S-Function Builder Dialog Box
The S-Function Builder dialog box enables you to specify the attributes of an
S-function to be built by an S-Function Builder block. To display the dialog
box, click twice on the block’s icon or select the block and then select Open
Block from the model editor’s Edit menu or the block’s context menu. The
dialog box appears.

3-11

3 Writing S-Functions in C

The dialog box contains controls that let you enter information needed for the
S-Function Builder block to build an S-function to your specifications. The
controls are grouped into panes. See the following sections for information
on the panes and the controls that they contain.

• “Parameters/S-Function Name Pane” on page 3-12

• “Port/Parameter Pane” on page 3-13

• “Initialization Pane” on page 3-14

• “Data Properties Pane” on page 3-16

• “Libraries Pane” on page 3-22

• “Outputs Pane” on page 3-24

• “Continuous Derivatives Pane” on page 3-28

• “Discrete Update Pane” on page 3-30

• “Build Info Pane” on page 3-32

Note The following sections use the term target S-function to refer to the
S-function specified by the S-Function Builder dialog box.

Parameters/S-Function Name Pane
This pane displays the target S-function’s name and parameters.

The pane contains the following controls.

3-12

S-Function Builder Dialog Box

S-function name
Specifies the name of the target S-function.

S-function parameters
This table displays the parameters of the target S-function. Each row of the
table corresponds to a parameter, and each column displays a property of the
parameter as follows:

• Name — Name of the parameter. Define and modify this property from
the “Parameters Pane” on page 3-20.

• Data type — Lists the data type of the parameter. Define and modify this
property from the “Parameters Pane” on page 3-20.

• Value — Specifies the value of the parameter. Enter a valid MATLAB
expression in this field.

Port/Parameter Pane
This pane displays the ports and parameters that the dialog box specifies for
the target S-function.

The pane contains a tree control whose top nodes correspond to the
target S-function’s input ports, output ports, and parameters, respectively.
Expanding the Input Ports, Output Ports, or Parameter node displays the
input ports, output ports, or parameters, respectively, specified for the

3-13

3 Writing S-Functions in C

target S-function. Selecting any of the port or parameter nodes selects the
corresponding entry on the corresponding port or parameter specification
pane.

Initialization Pane
The Initialization pane allows you to specify basic features of the S-function,
such as the width of its input and output ports and its sample time.

The S-Function Builder uses the information that you enter on this pane to
generate the S-function’s mdlInitializeSizes callback method. Simulink
invokes this method during the model initialization phase of the simulation
to obtain basic information about the S-function. (See “How Simulink
Interacts with C S-Functions” on page 3-59 for more information on the model
initialization phase.)

The Initialization pane contains the following fields.

Number of discrete states
Number of discrete states that the S-function has.

3-14

S-Function Builder Dialog Box

Discrete states IC
Initial conditions of the S-function’s discrete states. You can enter the values
as a comma-separated list or as a vector (e.g., [0 1 2]). The number of initial
conditions must equal the number of discrete states.

Number of continuous states
Number of continuous states that the S-function has.

Continuous states IC
Initial conditions of the S-function’s continuous states. You can enter the
values as a comma-separated list or as a vector (e.g., [0 1 2]). The number of
initial conditions must equal the number of continuous states.

Sample mode
Sample mode of the S-function. The sample mode determines the length of
the interval between the times when the S-function updates its output. You
can select one of the following options:

• Inherited

The S-function inherits its sample time from the block connected to its
input port.

• Continuous

The block updates its outputs at each simulation step.

• Discrete

The S-function updates its outputs at the rate specified in the Sample
time value field of the S-Function Builder dialog box.

Sample time value
Interval between updates of the S-function’s outputs. This field is enabled
only if you have selected Discrete as the S-function’s Sample mode.

3-15

3 Writing S-Functions in C

Data Properties Pane
The Data Properties pane allows you to add ports and parameters to your
S-function.

The column of buttons to the left of the panes allows you to add, delete, or
reorder ports or parameters, depending on the currently selected pane.

• To add a port or parameter, click the Add button (the top button in the
column of buttons).

• To delete the currently selected port/parameter, click the Delete button
(located beneath the Add button).

• To move the currently selected port/parameter up one position in the
corresponding S-Function port/parameter list, click the Up button (beneath
the Delete button).

• To move the currently selected port/parameter down one position in the
corresponding S-function port/parameter list, click the Down button
(beneath the Up button).

3-16

S-Function Builder Dialog Box

This pane also contains tabbed panes that enable you to specify the attributes
of the ports and parameters that you create. See the following topics for more
information.

• “Input Ports Pane” on page 3-17

• “Output Ports Pane” on page 3-18

• “Parameters Pane” on page 3-20

• “Data Type Attributes Pane” on page 3-21

Input Ports Pane
The Input Ports pane allows you to inspect and modify the properties of
the S-function’s input ports.

The pane comprises an editable table that lists the properties of the input
ports in the order in which the ports appear on the S-function block. Each row
of the table corresponds to a port. Each entry in the row displays a property
of the port as follows.

Port name
Name of the port. Edit this field to change the port name.

Dimensions
Lists the number of dimensions of input signals accepted by the port. To
display a list of supported dimensions, click the adjacent button. To change

3-17

3 Writing S-Functions in C

the port’s dimensionality, select a new value from the list. Specify 1-D to size
the signal dynamically, regardless of the signal’s actual dimensionality.

Note Simulink signals can have at most two dimensions.

Rows
Specifies the size of the input signal’s first (or only) dimension. Specify -1 to
size the signal dynamically.

Columns
Specifies the size of the input signal’s second dimension (only if the input port
accepts 2-D signals).

Note For input signals with two dimensions, if the row dimensions is
dynamically sized, the column dimension must also be dynamically sized or
set to 1. If the column dimension is set to some other value, the S-function
will compile, but any simulation containing this S-function will not run due to
an invalid dimension specification.

Complexity
Specifies whether the input port accepts real or complex-valued signals.

Frame
Specifies whether this port accepts frame-based signals generated by
the Signal Processing Blockset or Communications Blockset. For more
information, see the documentation for these blocksets.

Output Ports Pane
The Output Ports pane allows you to inspect and modify the properties of
the S-function’s output ports.

3-18

S-Function Builder Dialog Box

The pane comprises an editable table that lists the properties of the output
ports in the order in which the ports appear on the S-function block. Each row
of the table corresponds to a port. Each entry in the row displays a property
of the port as follows.

Port name
Name of the port. Edit this field to change the port name.

Dimensions
Lists the number of dimensions of signals output by the port. To display a
list of supported dimensions, click the adjacent button. To change the port’s
dimensionality, select a new value from the list. Specify 1-D to size the signal
dynamically, regardless of the signal’s actual dimensionality.

Note Simulink signals can have at most two dimensions.

Rows
Specifies the size of the output signal’s first (or only) dimension. Specify -1 to
size the signal dynamically.

3-19

3 Writing S-Functions in C

Columns
Specifies the size of the output signal’s second dimension (only if the port
outputs 2-D signals).

Note For output signals with two dimensions, if one of the dimensions is
dynamically sized the other dimension must also be dynamically sized or set
to 1. If the second dimension is set to some other value, the S-function will
compile, but any simulation containing this S-function will not run due to an
invalid dimension specification. In some cases, the default Simulink methods
that determine the dimensions of dynamically sized output ports may be
insufficient and both dimensions of the 2-D output signal may need to be
hard coded.

Complexity
Specifies whether the port outputs real or complex-valued signals.

Frame
Specifies whether this port outputs frame-based signals generated by
the Signal Processing Blockset or Communications Blockset. For more
information, see the documentation for these blocksets.

Parameters Pane
The Parameters pane allows you to inspect and modify the properties of
the S-function’s parameters.

3-20

S-Function Builder Dialog Box

The pane comprises an editable table that lists the properties of the
S-function’s parameters. Each row of the table corresponds to a parameter.
The order in which the parameters appear corresponds to the order in which
the user must specify them. Each entry in the row displays a property of the
parameter as follows.

Parameter name
Name of the parameter. Edit this field to change the name.

Data type
Lists the data type of the parameter. Click the adjacent button to display a
list of supported data types. To change the parameter’s data type, select a
new type from the list.

Complexity
Specifies whether the parameter has real or complex values.

Data Type Attributes Pane
This pane allows you to specify the data type attributes of the target
S-function’s input and output ports.

The pane contains a table listing the data type attributes of each of
the S-functions ports. Only some of the fields in the table are editable.
Non-editable fields are grayed out. Each row corresponds to a port of the

3-21

3 Writing S-Functions in C

target S-function. Each column specifies an attribute of the corresponding
port.

Port
Name of the port. This field is not editable.

Data Type
Data type of the port. To display a list of specifiable data types, select the
adjacent pulldown list control. To change the data type, select a different
data type from the list.

The remaining fields on this pane are enabled only if the Data Type field
specifies a fixed-point data type. See “Fixed-Point Data” for more information.

Libraries Pane
The Libraries pane allows you to specify the location of external code files
referenced by custom code that you enter in other panes of the S-Function
Builder dialog box.

3-22

S-Function Builder Dialog Box

The Libraries pane includes the following fields.

Library/Object/Source files
External library, object code, and source files referenced by custom code that
you enter elsewhere on the S-Function Builder dialog box. List each file on
a separate line. If the file resides in the current directory, you need specify
only the file’s name. If the file resides in another directory, you must specify
the full path of the file.

You can also use this field to specify search paths for libraries, object files,
header files, and source files. To do this, enter the tag LIB_PATH, INC_PATH, or
SRC_PATH, respectively, followed by the path name. You can make as many
entries of this kind as you need but each must reside on a separate line.

For example, consider an S-Function Builder project that resides at
d:\matlab6p5\work and needs to link against the following files:

• c:\customfolder\customfunctions.lib

• d:\matlab7\customobjs\userfunctions.obj

• d:\externalsource\freesource.c

The following entries enable the S-Function Builder to find these files:

customfunctions.lib
userfunctions.obj
LIB_PATH c:\customfolder\customfunctions.lib
LIB_PATH $MATLABROOT\customobjs
freesource.c
SRC_PATH d:\externalsource

As this example illustrates, you can use LIB_PATH to specify both object and
library file paths and the tag $MATLABROOT to indicate paths relative to the
MATLAB installation. You can also include multiple LIB_PATH entries on
separate lines. The paths are searched in the order specified.

You can also enter preprocessor (-D) directives in this field, e.g.,

-DDEBUG

3-23

3 Writing S-Functions in C

Each directive must reside on a separate line.

Includes
Header files containing declarations of functions, variables, and macros
referenced by custom code that you enter elsewhere on the S-Function Builder
dialog box. Specify each file on a separate line as #include statements. Use
brackets to enclose the names of standard C header files (e.g., #include
<math.h>). Use quotation marks to enclose names of custom header files (e.g.,
#include "myutils.h"). If your S-function uses custom include files that do
not reside in the current directory, you must use the INC_PATH tag in the
Library/Object/Source files field to set the S-Function Builder’s include
path to the directories containing the include files (see “Library/Object/Source
files” on page 3-23).

External function declarations
Declarations of external functions not declared in the header files listed in
the Includes field. Put each declaration on a separate line. The S-Function
Builder includes the specified declarations in the S-function source file that it
generates. This allows S-function code that computes the S-function’s states
or output to invoke the external functions.

Outputs Pane
Use the Outputs pane to enter code that computes the outputs of the
S-function at each simulation time step.

3-24

S-Function Builder Dialog Box

The Outputs pane contains the following fields.

Code for the mdlOutputs function
Code that computes the output of the S-function at each simulation time step
(or sample time hit, in the case of a discrete S-function). When generating the
source code for the S-function, the S-Function Builder inserts the code in this
field in a wrapper function of the form

void sfun_Outputs_wrapper(const real_T *u,
real_T *y,
const real_T *xD, /* optional */
const real_T *xC, /* optional */
const real_T *param0, /* optional */
int_T p_width0 /* optional */
real_T *param1 /* optional */
int_t p_width1 /* optional */
int_T y_width, /* optional */
int_T u_width) /* optional */

{

3-25

3 Writing S-Functions in C

/* Your code inserted here */
}

where sfun is the name of the S-function. The S-Function Builder inserts
a call to this wrapper function in the mdlOutputs callback method that it
generates for your S-function. Simulink invokes the mdlOutputs method
at each simulation time step (or sample time step in the case of a discrete
S-function) to compute the S-function’s output. The S-function’s mdlOutputs
method in turn invokes the wrapper function containing your output code.
Your output code then actually computes and returns the S-function’s output.

The mdlOutputs method passes some or all of the following arguments to
the outputs wrapper function.

Argument Description

u0, u1, ... uN Pointers to arrays containing the inputs to the
S-function, where N is the number of input ports
specified on the Input ports pane found on the Data
Properties pane. The names of the arguments that
appear in the outputs wrapper function are the same
as the names found on the Input ports pane. The
width of each array is the same as the input width
specified for each input on the Input ports pane. If
you specified -1 as an input width, the width of the
array is specified by the wrapper function’s u_width
argument (see below).

3-26

S-Function Builder Dialog Box

Argument Description

y0, y1, ... yN Pointer to arrays containing the outputs of the
S-function, where N is the number of output ports
specified on the Output ports pane found on the
Data Properties pane. The names of the arguments
that appear in the outputs wrapper function are
the same as the names found on the Output ports
pane. The width of each array is the same as the
output width specified for each output on the Output
ports pane. If you specified -1 as the output width,
the width of the array is specified by the wrapper
function’s y_width argument (see below). Use this
array to pass the outputs that your code computes
back to Simulink.

xD Pointer to an array containing the discrete states
of the S-function. This argument appears only if
you specified discrete states on the Initialization
pane. At the first simulation time step, the discrete
states have the initial values that you specified on
the Initialization pane. At subsequent sample-time
steps, the states are obtained from the values that
the S-function computes at the preceding time step
(see “Discrete Update Pane” on page 3-30 for more
information).

xC Pointer to an array containing the continuous states
of the S-function. This argument appears only if you
specified continuous states on the Initialization
pane. At the first simulation time step, the continuous
states have the initial values that you specified on the
Initialization pane. At subsequent time steps, the
states are obtained by numerically integrating the
derivatives of the states at the preceding time step
(see “Continuous Derivatives Pane” on page 3-28 for
more information).

3-27

3 Writing S-Functions in C

Argument Description

param0, p_width0,
param1, p_width1,
... paramN,
p_widthN

param0, param1, ...paramN are pointers to arrays
containing the S-function’s parameters, where N is the
number of parameters specified on the Parameters
pane found on the Data Properties pane. p_width0,
p_width1, ...p_widthN are the widths of the parameter
arrays. If a parameter is a matrix, the width equals
the product of the dimensions of the arrays. For
example, the width of a 3-by-2 matrix parameter
is 6. These arguments appear only if you specify
parameters on the Data Properties pane.

y_width Width of the array containing the S-function’s outputs.
This argument appears in the generated code only
if you specified -1 as the width of the S-function’s
output. If the output is a matrix, y_width is the
product of the dimensions of the matrix.

u_width Width of the array containing the S-function’s inputs.
This argument appears in the generated code only if
you specified -1 as the width of the S-function’s input.
If the input is a matrix, u_width is the product of the
dimensions of the matrix.

These arguments permit you to compute the output of the block as a function
of its inputs and, optionally, its states and parameters. The code that you
enter in this field can invoke external functions declared in the header files or
external declarations on the Libraries pane. This allows you to use existing
code to compute the outputs of the S-function.

Inputs are needed in the output function
Selected if the current values of the S-function’s inputs are used to compute
its outputs. Simulink uses this information to detect algebraic loops created
by directly or indirectly connecting the S-function’s output to its input.

Continuous Derivatives Pane
If the S-function has continuous states, use the Continuous Derivatives
pane to enter code required to compute the state derivatives.

3-28

S-Function Builder Dialog Box

Enter code to compute the derivatives of the S-function’s continuous states
in the Code for the mdlDerivatives function field on this pane. When
generating code, the S-Function Builder takes the code in this pane and
inserts it in a wrapper function of the form

void sfun_Derivatives_wrapper(const real_T *u,
const real_T *y,
real_T *dx,
real_T *xC,
const real_T *param0, /* optional */
int_T p_width0, /* optional */
real_T *param1,/* optional */
int_T p_width1, /* optional */

int_T y_width, /* optional */
int_T u_width) /* optional */

{

/* Your code inserted here. */

}

3-29

3 Writing S-Functions in C

where sfun is the name of the S-function. The S-Function Builder inserts a
call to this wrapper function in the mdlDerivatives callback method that it
generates for the S-function. Simulink calls the mdlDerivatives method
at the end of each time step to obtain the derivatives of the S-function’s
continuous states (see “How Simulink Interacts with C S-Functions” on
page 3-59). The Simulink solver numerically integrates the derivatives to
determine the continuous states at the next time step. At the next time step,
Simulink passes the updated states back to the S-function’s mdlOutputs
method (see “Outputs Pane” on page 3-24).

The generated S-function’s mdlDerivatives callback method passes the
following arguments to the derivatives wrapper function:

• u

• y

• dx

• xC

• param0, p_width0, param1, p_width1, ... paramN, p_widthN

• y_width

• u_width

The dx argument is a pointer to an array whose width is the same as the
number of continuous derivatives specified on the Initialization pane. Your
code should use this array to return the values of the derivatives that it
computes. See “Outputs Pane” on page 3-24 for the meanings and usage of the
other arguments. The arguments allow your code to compute derivatives as a
function of the S-function’s inputs, outputs, and, optionally, parameters. Your
code can invoke external functions declared on the Libraries pane.

Discrete Update Pane
If the S-function has discrete states, use the Discrete Update pane to enter
code that computes at the current time step the values of the discrete states
at the next time step.

3-30

S-Function Builder Dialog Box

Enter code to compute the values of the S-function’s discrete states in the
Code for the mdlUpdate function field on this pane. When generating
code, the S-Function Builder takes the code in this pane and inserts it in a
wrapper function of the form

void sfun_Update_wrapper(const real_T *u,
const real_T *y,
real_T *xD,
const real_T *param0, /* optional */
int_T p_width0, /* optional */
real_T *param1,/* optional */
int_T p_width1, /* optional */

int_T y_width, /* optional */
int_T u_width) /* optional */

{

/* Your code inserted here. */

}

3-31

3 Writing S-Functions in C

where sfun is the name of the S-function. The S-Function Builder inserts
a call to this wrapper function in the mdlUpdate callback method that it
generates for the S-function. Simulink calls the mdlUpdate method at the end
of each time step to obtain the values of the S-function’s discrete states at the
next time step (see “How Simulink Interacts with C S-Functions” on page
3-59). At the next time step, Simulink passes the updated states back to the
S-function’s mdlOutputs method (see “Outputs Pane” on page 3-24).

The generated S-function’s mdlUpdates callback method passes the following
arguments to the updates wrapper function:

• u

• y

• xD

• param0, p_width0, param1, p_width1, ... paramN, p_widthN

• y_width

• u_width

See “Outputs Pane” on page 3-24 for the meanings and usage of these
arguments. Your code should use the xD (discrete states) variable to return
the values of the discrete states that it computes. The arguments allow your
code to compute the discrete states as functions of the S-function’s inputs,
outputs, and, optionally, parameters. Your code can invoke external functions
declared on the Libraries pane.

Build Info Pane
Use the Build Info pane to specify options for building the S-function
MEX-file.

3-32

S-Function Builder Dialog Box

This pane contains the following fields.

Show compile steps
Log each build step in the Compilation diagnostics field.

Create a debuggable MEX-file
Include debug information in the generated MEX-file.

Generate wrapper TLC
Generate a TLC file. You do not need to generate a TLC file if you do not
expect the S-function ever to run in accelerated mode or be used in a model
from which Real–Time Workshop generates code.

Save code only
Do not build a MEX-file from the generated source code.

3-33

3 Writing S-Functions in C

Enable access to SimStruct
Makes the SimStruct (S) accessible to the wrapper functions that S-Function
Builder generates. This enables you to use the SimStruct macros and
functions with your code in the Outputs, Continuous Derivatives, and
Discrete Updates panes. For example, with this option enabled, you can use
macros such as ssGetT in code that computes the S-function’s outputs:

double t = ssGetT(S);
if(t < 2) {

y0[0] = u0[0];
} else {

y0[0]= 0.0;
}

For a complete listing of SimStruct macros and functions, see in the online
documentation.

Additional methods
Click this button to include TLC methods in your S-function. The following
dialog box appears.

Check the methods you want to add and click the Close button to include
the methods in your S-function. See “Block Target File Methods” for more
information.

3-34

Example of a Basic C MEX S-Function

Example of a Basic C MEX S-Function
This section presents an example of a C MEX S-function that you
can use as a model for creating simple C S-functions. The example
is the timestwo S-function example that comes with Simulink (see
matlabroot/simulink/src/timestwo.c). This S-function outputs twice its
input.

The following model uses the timestwo S-function to double the amplitude
of a sine wave and plot it in a scope.

The block dialog for the S-function specifies timestwo as the S-function name;
the parameters field is empty.

The timestwo S-function contains the S-function callback methods shown
in this figure.

The contents of timestwo.c are shown below. A description of the code is
provided after the example.

3-35

3 Writing S-Functions in C

#define S_FUNCTION_NAME timestwo /* Defines and Includes */

#define S_FUNCTION_LEVEL 2

#include simstruc.h

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0);

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch will be reported by Simulink */

}

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S,1)) return;

ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetNumSampleTimes(S, 1);

/* Take care when specifying exception free code - see sfuntmpl.doc */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

}

static void mdlOutputs(SimStruct *S, int_T tid)

{

int_T i;

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

real_T *y = ssGetOutputPortRealSignal(S,0);

int_T width = ssGetOutputPortWidth(S,0);

for (i=0; i<width; i++) {

*y++ = 2.0 *(*uPtrs[i]);

3-36

Example of a Basic C MEX S-Function

}

}

static void mdlTerminate(SimStruct *S){}

/* Simulink/Real-Time Workshop Interface */

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include simulink.c /* MEX-file interface mechanism */

#else

#include cg_sfun.h /* Code generation registration function */

#endif

This example has three parts:

• Defines and includes

• Callback implementations

• Simulink (or Real-Time Workshop) interface

The following sections explain each of these parts.

Defines and Includes
The example starts with the following defines.

#define S_FUNCTION_NAME timestwo
#define S_FUNCTION_LEVEL 2

The first specifies the name of the S-function (timestwo). The second specifies
that the S-function is in the level 2 format (for more information about level
1 and level 2 S-functions, see “Converting Level 1 C MEX S-Functions to
Level 2” on page 3-68).

After defining these two items, the example includes simstruc.h, which
is a header file that gives access to the SimStruct data structure and the
MATLAB Application Program Interface (API) functions.

#define S_FUNCTION_NAME timestwo

3-37

3 Writing S-Functions in C

#define S_FUNCTION_LEVEL 2
#include "simstruc.h"

The simstruc.h file defines a data structure, called the SimStruct, that
Simulink uses to maintain information about the S-function. The simstruc.h
file also defines macros that enable your MEX-file to set values in and get
values (such as the input and output signal to the block) from the SimStruct
(see Chapter 9, “SimStruct Functions — By Category”).

Callback Implementations
The next part of the timestwo S-function contains implementations of
callback methods required by Simulink.

mdlInitializeSizes
Simulink calls mdlInitializeSizes to inquire about the number of input and
output ports, sizes of the ports, and any other objects (such as the number
of states) needed by the S-function.

The timestwo implementation of mdlInitializeSizes specifies the following
size information:

• Zero parameters

This means that the S-function parameters field of the S-functions’s
dialog box must be empty. If it contains any parameters, Simulink reports
a parameter mismatch.

• One input port and one output port

The widths of the input and output ports are dynamically sized. This tells
Simulink that the S-function can accept an input signal of any width. Note
that the default handling for dynamically sized S-functions for this case
(one input and one output) is that the input and output widths are equal.

• One sample time

The timestwo example specifies the actual value of the sample time in the
mdlInitializeSampleTimes routine.

3-38

Example of a Basic C MEX S-Function

• The code is exception free.

Specifying exception-free code speeds up execution of your S-function. You
must take care when specifying this option. In general, if your S-function
isn’t interacting with MATLAB, it is safe to specify this option. For more
details, see “How Simulink Interacts with C S-Functions” on page 3-59.

mdlInitializeSampleTimes
Simulink calls mdlInitializeSampleTimes to set the sample times of the
S-function. A timestwo block executes whenever the driving block executes.
Therefore, it has a single inherited sample time, INHERITED_SAMPLE_TIME.

mdlOutputs
Simulink calls mdlOutputs at each time step to calculate a block’s outputs.
The timestwo implementation of mdlOutputs takes the input, multiplies it by
2, and writes the answer to the output.

The timestwo mdlOutputs method uses a SimStruct macro,

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

to access the input signal. The macro returns a vector of pointers, which
you must access using

*uPtrs[i]

For more details, see “Data View” on page 3-63.

The timestwo mdlOutputs method uses the macro

real_T *y = ssGetOutputPortRealSignal(S,0);

to access the output signal. This macro returns a pointer to an array
containing the block’s outputs.

3-39

3 Writing S-Functions in C

The S-function uses

int_T width = ssGetOutputPortWidth(S,0);

to get the width of the signal passing through the block. Finally, the S-function
loops over the inputs to compute the outputs. ()

mdlTerminate
Perform tasks at the end of the simulation. This is a mandatory S-function
routine. However, the timestwo S-function doesn’t need to perform any
termination actions, so this routine is empty.

Simulink/Real-Time Workshop Interface
At the end of the S-function, specify code that attaches this example to either
Simulink or Real-Time Workshop. This trailer is required at the end of every
S-function. If it is omitted, any attempt to compile the S-function will abort
with a failure during build of exports file error message.

#ifdef MATLAB_MEX_FILE
#include "simulink.c"
#else
#include "cg_sfun.h"
#endif

Building the Timestwo Example
To incorporate this S-function into Simulink, enter

mex timestwo.c

at the command line. The mex command compiles and links the timestwo.c
file to create a dynamically loadable executable for Simulink to use.

The resulting executable is referred to as a MEX S-function, where MEX
stands for “MATLAB EXecutable.” The MEX-file extension varies from
platform to platform. For example, in Microsoft Windows, the MEX-file
extension is .mexw32.

3-40

Templates for C S-Functions

Templates for C S-Functions
Simulink provides skeleton implementations of C MEX S-functions,
called templates, intended to serve as starting points for creating your
own S-functions. The templates contain skeleton implementations of
callback methods with comments that explain their use. The template file,
sfuntmpl_basic.c, which can be found in the directory simulink/src below
the MATLAB root directory, contains commonly used S-function routines. A
template containing all available routines (as well as more comments) can be
found in sfuntmpl_doc.c in the same directory.

Note We recommend that you use the C MEX-file template when developing
MEX S-functions.

S-Function Source File Requirements
This section describes requirements that every S-function source file must
meet to compile correctly. The S-function templates meet these requirements.

Statements Required at the Top of S-Functions
For S-functions to operate properly, each source module of your S-function
that accesses the SimStruct must contain the following sequence of defines
and include

#define S_FUNCTION_NAME your_sfunction_name_here

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

where your_sfunction_name_here is the name of your S-function (i.e., what
you enter in the Simulink S-Function block dialog). These statements give
you access to the SimStruct data structure that contains pointers to the data
used by the simulation. The included code also defines the macros used to
store and retrieve data in the SimStruct, described in detail in “Converting
Level 1 C MEX S-Functions to Level 2” on page 3-68. In addition, the code
specifies that you are using the level 2 format of S-functions.

3-41

3 Writing S-Functions in C

Note All S-functions from Simulink 1.3 through 2.1 are considered to be Level
1 S-functions. They are compatible with Simulink 3.0, but we recommend that
you write new S-functions in the Level 2 format.

The following headers are included by
matlabroot/simulink/include/simstruc.h when
compiling as a MEX-file.

Header Files Included by simstruc.h When Compiling as a MEX-File

Header File Description

matlabroot/extern/include/tmwtypes.h General data types, e.g., real_T

matlabroot/extern/include/mex.h MATLAB MEX-file API routines to
interface MEX-files with MATLAB

matlabroot/extern/include/matrix.h MATLAB External Interface API
routines to query and manipulate
MATLAB matrices

When compiling your S-function for use with Real-Time Workshop,
simstruc.h includes the following.

Header Files Included by simstruc.h When Used by Real-Time
Workshop

Header File Description

matlabroot/extern/include/tmwtypes.h General types, e.g., real_T

matlabroot/rtw/c/libsrc/rt_matrx.h Macros for MATLAB API
routines

Callback Methods That an S-Function Must Implement
The S-function API requires you to implement the following functions (see
“Writing Callback Methods” on page 3-67):

3-42

Templates for C S-Functions

• mdlInitializeSizes specifies the sizes of various parameters in the
SimStruct, such as the number of output ports for the block.

• mdlInitializeSampleTimes specifies the sample time(s) of the block.

• mdlOutputs calculates the output of the block.

• mdlTerminate performs any actions required at the termination of the
simulation. If no actions are required, this function can be implemented as
a stub.

Statements Required at the Bottom of S-Functions
Include this trailer code at the end of your C MEX S-function main module
only.

#ifdef MATLAB_MEX_FILE /* Is this being compiled as MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration func */

#endif

These statements select the appropriate code for your particular application:

• simulink.c is included if the file is being compiled into a MEX-file.

• cg_sfun.h is included if the file is being used in conjunction with the
Real-Time Workshop to produce a stand-alone or real-time executable.

Note This trailer code must not be in the body of any S-function routine.

The SimStruct
The file matlabroot/simulink/include/simstruc.h is a C language header
file that defines the Simulink data structure and the SimStruct access
macros. It encapsulates all the data relating to the model or S-function,
including block parameters and outputs.

There is one SimStruct data structure allocated for the Simulink model.
Each S-function in the model has its own SimStruct associated with it.
The organization of these SimStructs is much like a directory tree. The

3-43

3 Writing S-Functions in C

SimStruct associated with the model is the root SimStruct. The SimStructs
associated with the S-functions are the child SimStructs.

Simulink provides a set of macros that S-functions can use to access the fields
of the SimStruct. See Chapter 9, “SimStruct Functions — By Category” for
more information.

Compiling C S-Functions
S-functions can be compiled in one of three modes identified by the presence
of one of the following defines:

• MATLAB_MEX_FILE — Indicates that the S-function is being built as a
MEX-file for use with Simulink.

• RT — Indicates that the S-function is being built with the Real-Time
Workshop generated code for a real-time application using a fixed-step
solver.

• NRT — Indicates that the S-function is being built with the Real-Time
Workshop generated code for a non-real-time application using a
variable-step solver.

These define statements do not appear in the S-function. The mode definition
are made by either the mex command or by Real-Time Workshop when the
S-function is built.

3-44

Legacy Code Tool

Legacy Code Tool
The Legacy Code Tool is a utility that generates an S-function automatically
from existing C code and specifications that you supply using M-code. It
enables you to transform your C functions into C MEX S-functions for
inclusion in a Simulink model. If you use Real-Time Workshop to generate
code from that model, the Legacy Code Tool can insert an appropriate call to
your C function in the generated code. The following sections outline aspects
of using the Legacy Code Tool:

• “Overview of Legacy Code Tool” on page 3-45

• “Using Legacy Code Tool” on page 3-47

• “Legacy Code Tool Data Structure” on page 3-50

• “Legacy Code Tool Function Specifications” on page 3-53

• “Legacy Code Tool Demos” on page 3-58

Overview of Legacy Code Tool
The Legacy Code Tool provides a means for incorporating your existing C code
in a Simulink simulation. The tool transforms your C functions into C MEX
S-functions for inclusion in a Simulink model. Toward that end, the tool can
be easier to use than its alternatives, namely, using the S-Function Builder
block or writing S-functions from scratch.

To interact with the Legacy Code Tool, use the

• legacy_code function to perform the requisite steps for transforming your
C code into a C MEX S-function.

• Legacy Code Tool data structure to specify properties of both your C code
and the S-function that the tool will produce.

The following diagram illustrates a general procedure for using the Legacy
Code Tool. The next section provides an example that demonstrates how to
use the Legacy Code Tool to transform an existing C function into a C MEX
S-function in Simulink.

3-45

3 Writing S-Functions in C

3-46

Legacy Code Tool

Using Legacy Code Tool
Suppose you have an existing C function that outputs the value of its
floating-point input multiplied by two. The function is defined in a source
file named doubleIt.c, and its declaration exists in a header file named
doubleIt.h as shown here.

To use the Legacy Code Tool to incorporate this simple C function in a
Simulink model as a C MEX S-function:

1 Use the legacy_code function to initialize a MATLAB structure whose
fields represent Legacy Code Tool properties. For example, create a Legacy
Code Tool data structure named def by issuing the following command at
the MATLAB prompt:

def = legacy_code('initialize')

The Legacy Code Tool data structure named def displays its fields in the
MATLAB Command Window as shown here:

def =

SFunctionName: ''
OutputFcnSpec: ''
StartFcnSpec: ''

TerminateFcnSpec: ''
HeaderFiles: {}
SourceFiles: {}

HostLibFiles: {}

3-47

3 Writing S-Functions in C

TargetLibFiles: {}
IncPaths: {}
SrcPaths: {}
LibPaths: {}
Options: [1x1 struct]

2 Specify appropriate values for fields in the Legacy Code Tool data structure
to identify characteristics of the existing C function. For example, specify
the C function source and header filenames by issuing the following
commands at the MATLAB prompt:

def.SourceFiles = {'doubleIt.c'};
def.HeaderFiles = {'doubleIt.h'};

You must also specify information about the S-function that the Legacy
Code Tool produces from the C code. For example, specify a name for the
S-function and its output function declaration by typing the commands:

def.SFunctionName = 'ex_sfun_doubleit';
def.OutputFcnSpec = 'double y1 = doubleIt(double u1)';

See “Legacy Code Tool Data Structure” on page 3-50 for information about
its various fields. For more information about assigning values to fields in
a structure, see “Structures” in the MATLAB documentation.

3 Use the legacy_code function to generate an S-function source file from
the existing C function. At the MATLAB prompt, type:

legacy_code('sfcn_cmex_generate', def);

The Legacy Code Tool uses the information specified in def to create the
S-function source file named ex_sfun_doubleit.c in the current MATLAB
directory.

4 Use the legacy_code function to compile the S-function source file into a C
MEX S-function that Simulink can use. At the MATLAB prompt, type:

legacy_code('compile', def);

The Legacy Code Tool uses the information specified in def to create a
dynamically loadable executable file in the current MATLAB directory.

3-48

Legacy Code Tool

On Microsoft Windows, the resulting C MEX S-function is named
ex_sfun_doubleit.mexw32.

5 Use the legacy_code function to insert a masked S-Function block into a
Simulink model. The Legacy Code Tool configures the block to use the C
MEX S-function created in the previous step. Also, the tool masks the
block such that it displays the value of its OutputFcnSpec property (see
“Legacy Code Tool Data Structure” on page 3-50). For example, create a
new Simulink model containing a masked S-Function block by issuing the
following command at the MATLAB prompt:

legacy_code('slblock_generate', def);

The block appears in an empty model editor window as shown here:

The following Simulink model demonstrates that the C MEX S-function
produced by the Legacy Code Tool behaves like the C function doubleIt. In
particular, the S-Function block named ex_sfun_doubleit returns the value
of its floating-point input multiplied by two.

3-49

3 Writing S-Functions in C

Legacy Code Tool Data Structure
The Legacy Code Tool uses a data structure to define properties of the existing
C code. The structure also includes properties that determine characteristics
of the S-function the tool will produce. The following table describes each field
contained in the Legacy Code Tool data structure.

Field Description

SFunctionName A string specifying a name for the S-function to be
produced by the Legacy Code Tool. (Required)

3-50

Legacy Code Tool

Field Description

OutputFcnSpec A nonempty string specifying the function that
the S-function calls at each time step. You must
define this function using tokens that Simulink
can interpret (see “Legacy Code Tool Function
Specifications” on page 3-53).

StartFcnSpec A string specifying the function that the S-function
calls when it begins execution. This function can
access only the S-function parameters. You must
define this function using tokens that Simulink
can interpret (see “Legacy Code Tool Function
Specifications” on page 3-53).

TerminateFcnSpec A string specifying the function that the S-function
calls when it terminates execution. This function
can access only the S-function parameters. You
must define this function using tokens that
Simulink can interpret (see “Legacy Code Tool
Function Specifications” on page 3-53).

HeaderFiles A cell array of strings specifying header files
required for compilation. You can specify the
header files using absolute or relative pathnames.

SourceFiles A cell array of strings specifying source files
required for compilation. You can specify the source
files using absolute or relative pathnames.

HostLibFiles A cell array of strings specifying library files
required for host compilation. You can specify the
library files using absolute or relative pathnames.

TargetLibFiles A cell array of strings specifying library files
required for target (i.e., standalone) compilation.
You can specify the library files using absolute or
relative pathnames.

IncPaths A cell array of strings specifying include directories
containing header files. You can specify the include
directories using absolute or relative pathnames.

3-51

3 Writing S-Functions in C

Field Description

SrcPaths A cell array of strings specifying include directories
containing source files. You can specify the include
directories using absolute or relative pathnames.

LibPaths A cell array of strings specifying include directories
containing host and target library files. You can
specify the include directories using absolute or
relative pathnames.

Options A structure that controls S-function options. Its
fields include:

isMacro — A logical value specifying whether the
legacy code is a C macro. By default, its value is
false (i.e., 0).

isVolatile — A logical value specifying the
setting of the S-function SS_OPTION_NONVOLATILE
option (see ssSetOptions). By default, its value
is true (i.e., 1).

canBeCalledConditionally — A logical
value specifying the setting of the S-function
SS_OPTION_CAN_BE_CALLED_CONDITIONALLY option
(see ssSetOptions). By default, its value is true
(i.e., 1).

useTlcWithAccel — A logical value
specifying the setting of the S-function
SS_OPTION_USE_TLC_WITH_ACCELERATOR option
(see ssSetOptions). By default, its value is true
(i.e., 1).

language — A string specifying either 'C' or
'C++' as the target language of the S-function
that Legacy Code Tool will produce. By default,
its value is 'C'.

3-52

Legacy Code Tool

Legacy Code Tool Function Specifications
The OutputFcnSpec, StartFcnSpec, and TerminateFcnSpec fields defined in
the Legacy Code Tool data structure (see “Legacy Code Tool Data Structure”
on page 3-50) require string values that adhere to a particular convention.
This enables Legacy Code Tool to map the arguments of your C function to the
inputs, outputs, and parameters of the S-function that the tool produces. The
general syntax for these function specifications is:

output_arguments = function_name(input_arguments, parameter_arguments)

The following sections explain the different components of the function
specification:

• “Function Name” on page 3-53

• “Input Arguments” on page 3-53

• “Output Arguments” on page 3-55

• “Parameter Arguments” on page 3-56

Function Name
The function name that you specify must be the same as your existing C
function name. For example, if your C function prototype is

float doubleIt(float inVal);

the function name in the Legacy Code Tool function specification must be
doubleIt.

Input Arguments
You must define input arguments in the function specification using tokens
that Simulink can interpret. This enables Legacy Code Tool to map the
input arguments of your C function to the inputs of the S-function that the
tool produces. Specify each input argument in the function specification by
designating a

• Data type that Simulink supports (see “Data Types Supported by Simulink”
in the Simulink documentation)

3-53

3 Writing S-Functions in C

• Token of the form u1, u2, ..., un, where n is the total number of input
arguments

For example, if your C function prototype is

float doubleIt(float inVal);

the OutputFcnSpec string should define the token u1 whose data type is
double as follows:

'double y1 = doubleIt(double u1)'

Using this function specification, Simulink maps the input argument inVal to
the token u1, and its float C data type to the double data type supported
by Simulink.

Also, the input argument type and its declaration in a C function prototype
determine the syntax of the Legacy Code Tool function specification. The
following table presents the allowable function specification syntax for an
integer input argument. Use the table to identify the appropriate syntax for
input arguments in the Legacy Code Tool function specification, given your
input argument type and its declaration in your C function prototype.

Argument
Type

C Function Prototype Legacy Code Tool
Function Specification

No arguments function(void) function(void)

Scalar pass by
value

function(int in1) function(int16 u1)

Scalar pass by
pointer

function(int *in1) function(int16 u1[1])

Fixed vector function(int in1[10]) or
function(int *in1)

function(int16 u1[10])

Variable vector function(int in1[]) or
function(int *in1)

function(int16 u1[])

3-54

Legacy Code Tool

Argument
Type

C Function Prototype Legacy Code Tool
Function Specification

Fixed matrix function(int in1[15]) or
function(int in1[]) or
function(int *in1)

function(int16
u1[3][5])

Variable
matrix

function(int in1[]) or
function(int *in1)

function(int16 u1[][])

Note At the MATLAB prompt, enter legacy_code('help') for more
information about creating function specifications in Legacy Code Tool.

Output Arguments
You must define output arguments in the function specification using tokens
that Simulink can interpret. This enables Legacy Code Tool to map the
output arguments of your C function to the outputs of the S-function that the
tool produces. Specify each output argument in the function specification
by designating a

• Data type that Simulink supports (see “Data Types Supported by Simulink”
in the Simulink documentation)

• Token of the form y1, y2, ..., yn, where n is the total number of output
arguments

For example, if your C function prototype is

float doubleIt(float inVal);

the OutputFcnSpec string should define the token y1 whose data type is
double as follows:

'double y1 = doubleIt(double u1)'

Using this function specification, Simulink maps the output argument to
the token y1, and its float C data type to the double data type supported
by Simulink.

3-55

3 Writing S-Functions in C

Also, the output argument type and its declaration in a C function prototype
determine the syntax of the Legacy Code Tool function specification. The
following table presents the allowable function specification syntax for an
integer output argument. Use the table to identify the appropriate syntax for
output arguments in the Legacy Code Tool function specification, given your
output argument type and its declaration in your C function prototype.

Argument
Type

C Function Prototype Legacy Code Tool
Function Specification

No arguments void function(...) void function(...)

Scalar value int y1 = function(...) int16 y1 =
function(...)

Scalar pointer function(int *y1) function(int16 y1[1])

Fixed vector function(int y1[10]) or
function(int *y1)

function(int16
y1[10])

Fixed matrix function(int y1[15]) or
function(int y1[]) or
function(int *y1)

function(int16
y1[3][5])

Note At the MATLAB prompt, enter legacy_code('help') for more
information about creating function specifications in Legacy Code Tool.

Parameter Arguments
You must define parameter arguments in the function specification using
tokens that Simulink can interpret. This enables Legacy Code Tool to map
certain arguments from your C function to the parameters of the S-function
that the tool produces. Specify each parameter argument in the function
specification by designating a

• Data type that Simulink supports (see “Data Types Supported by Simulink”
in the Simulink documentation)

• Token of the form p1, p2, ..., pn, where n is the total number of parameter
arguments

3-56

Legacy Code Tool

For example, if you intend to parameterize the exponent argument in the
following C function prototype:

float powerIt(float inVal, const int exponent);

the OutputFcnSpec string should define the token p1 whose data type is
double as follows:

'double y1 = powerIt(double u1, int16 p1)'

Using this function specification, Simulink maps the parameter argument
exponent to the token p1, and its int C data type to the int16 data type
supported by Simulink.

Also, the parameter argument type and its declaration in a C function
prototype determine the syntax of the Legacy Code Tool function specification.
The following table presents the allowable function specification syntax for an
integer parameter argument. Use the table to identify the appropriate syntax
for parameter arguments in the Legacy Code Tool function specification,
given your parameter argument type and its declaration in your C function
prototype.

Argument
Type

C Function Prototype Legacy Code Tool
Function Specification

Scalar pass by
value

function(int p1) function(int16 p1)

Scalar pass by
pointer

function(int *p1) function(int16 p1[1])

Fixed vector function(int p1[10]) or
function(int *p1)

function(int16
p1[10])

Variable vector function(int p1[]) or
function(int *p1)

function(int16 p1[])

Fixed matrix function(int p1[15]) or
function(int p1[]) or
function(int *p1)

function(int16
p1[3][5])

Variable
matrix

function(int p1[]) or
function(int *p1)

function(int16
p1[][])

3-57

3 Writing S-Functions in C

Note At the MATLAB prompt, enter legacy_code('help') for more
information about creating function specifications in Legacy Code Tool.

Legacy Code Tool Demos
Simulink provides a set of demos that illustrate usage of the Legacy Code
Tool. At the MATLAB prompt, enter

demo('simulink', 'modeling features')

to view the Legacy Code Tool demos listed under the heading “Calling Legacy
C and C++ Functions.”

3-58

How Simulink Interacts with C S-Functions

How Simulink Interacts with C S-Functions
It is helpful in writing C MEX-file S-functions to understand how Simulink
interacts with S-functions. This section examines the interaction from two
perspectives: a process perspective, i.e., at which points in a simulation
Simulink invokes the S-function, and a data perspective, i.e., how Simulink
and the S-function exchange information during a simulation.

Process View
The following figures show the order in which Simulink invokes an
S-function’s callback methods. Solid rectangles indicate callbacks that always
occur during model initialization and/or at every time step. Dotted rectangles
indicate callbacks that may occur during initialization and/or at some or
all time steps during the simulation loop. See the documentation for each
callback method in Chapter 8, “S-Function Callback Methods — Alphabetical
List” to determine the exact circumstances under which Simulink invokes
the callback.

3-59

3 Writing S-Functions in C

3-60

How Simulink Interacts with C S-Functions

3-61

3 Writing S-Functions in C

Calling Structure for Real-Time Workshop
When generating code, Real-Time Workshop does not go through the entire
calling sequence outlined above. After initializing the model as outlined in
the preceding section, Simulink calls mdlRTW, an S-function routine unique
to Real-Time Workshop, mdlTerminate, and exits.

For more information about Real-Time Workshop and how it interacts with
S-functions, see the Real-Time Workshop documentation and the “Real-Time
Workshop Target Language Compiler Reference Guide”.

Alternate Calling Structure for External Mode
When you are running Simulink in external mode, the calling sequence for
S-function routines changes. This picture shows the correct sequence for
external mode.

Simulink calls mdlRTW once when it enters external mode and again each
time a parameter changes or when you select Update Diagram under your
model’s Edit menu.

Note Running Simulink in external mode requires Real-Time Workshop.
For more information about external mode, see the Real-Time Workshop
documentation.

3-62

How Simulink Interacts with C S-Functions

Data View
S-function blocks have input and output signals, parameters, and internal
states, plus other general work areas. In general, block inputs and outputs
are written to, and read from, a block I/O vector. Inputs can also come from

• External inputs via the root inport blocks

• Ground if the input signal is unconnected or grounded

Block outputs can also go to the external outputs via the root outport blocks.
In addition to input and output signals, S-functions can have

• Continuous states

• Discrete states

• Other working areas such as real, integer or pointer work vectors

You can parameterize S-function blocks by passing parameters to them using
the S-function block dialog box.

The following figure shows the general mapping between these various types
of data.

3-63

3 Writing S-Functions in C

An S-function’s mdlInitializeSizes routine sets the sizes of the various
signals and vectors. S-function methods called during the simulation loop can
determine the sizes and values of the signals.

An S-function method can access input signals in two ways:

• Via pointers

• Using contiguous inputs

Accessing Signals Using Pointers
During the simulation loop, accessing the input signals is performed using

InputRealPtrsType uPtrs =
ssGetInputPortRealSignalPtrs(S,portIndex)

This is an array of pointers, where portIndex starts at 0. There is one for
each input port. To access an element of this signal you must use

*uPtrs[element]

as described by this figure.

3-64

How Simulink Interacts with C S-Functions

Note that input array pointers can point at noncontiguous places in memory.
You can retrieve the output signal by using this code.

real_T *y = ssGetOutputPortSignal(S,outputPortIndex);

Accessing Contiguous Input Signals
An S-function’s mdlInitializeSizes method can specify that the elements
of its input signals must occupy contiguous areas of memory, using
ssSetInputPortRequiredContiguous. If the inputs are contiguous, other
methods can use ssGetInputPortSignal to access the inputs.

Accessing Input Signals of Individual Ports
This section describes how to access all input signals of a particular port and
write them to the output port. The preceding figure shows that the input array
of pointers can point to noncontiguous entries in the block I/O vector. The
output signals of a particular port form a contiguous vector. Therefore, the

3-65

3 Writing S-Functions in C

correct way to access input elements and write them to the output elements
(assuming the input and output ports have equal widths) is to use this code.

int_T element;

int_T portWidth = ssGetInputPortWidth(S,inputPortIndex);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,inputPortIndex);

real_T *y = ssGetOutputPortSignal(S,outputPortIdx);

for (element=0; element<portWidth; element++) {

y[element] = *uPtrs[element];

}

A common mistake is to try to access the input signals via pointer arithmetic.
For example, if you were to place

real_T *u = *uPtrs; /* Incorrect */

just below the initialization of uPtrs and replace the inner part of the above
loop with

*y++ = *u++; /* Incorrect */

the code compiles, but the MEX-file might crash Simulink. This is because it
is possible to access invalid memory (which depends on how you build your
model). When accessing the input signals incorrectly, a crash occurs when the
signals entering your S-function block are not contiguous. Noncontiguous
signal data occurs when signals pass through virtual connection blocks such
as the Mux or Selector blocks.

To verify that you are correctly accessing wide input signals, pass a replicated
signal to each input port of your S-function. You do this by creating a Mux
block with the number of input ports equal to the width of the desired signal
entering your S-function. Then the driving source should be connected to each
input port as shown in this figure.

3-66

Writing Callback Methods

Writing Callback Methods
Writing an S-function basically involves creating implementations of the
callback functions that Simulink invokes during a simulation. For guidelines
on implementing a particular callback, see the documentation for the callback
in Chapter 8, “S-Function Callback Methods — Alphabetical List”. For
information on using callbacks to implement specific block features, such as
parameters or sample times, see Chapter 7, “Implementing Block Features”.

3-67

3 Writing S-Functions in C

Converting Level 1 C MEX S-Functions to Level 2
Level 2 S-functions were introduced with Simulink 2.2. Level 1 S-functions
refer to S-functions that were written to work with Simulink 2.1 and previous
releases. Level 1 S-functions are compatible with Simulink 2.2 and subsequent
releases; you can use them in new models without making any code changes.
However, to take advantage of new features in S-functions, level 1 S-functions
must be updated to level 2 S-functions. Here are some guidelines:

• Start by looking at simulink/src/sfunctmpl_doc.c. This template
S-function file concisely summarizes level 2 S-functions.

• At the top of your S-function file, add this define:

#define S_FUNCTION_LEVEL 2

• Update the contents of mdlInitializeSizes. In particular, add the
following error handling for the number of S-function parameters:

ssSetNumSFcnParams(S, NPARAMS); /*Number of expected parameters*/

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

/* Return if number of expected != number of actual parameters */

return;

}

Set up the inputs using:

if (!ssSetNumInputPorts(S, 1)) return; /*Number of input ports */

ssSetInputPortWidth(S, 0, width); /* Width of input

port one (index 0)*/

ssSetInputPortDirectFeedThrough(S, 0, 1); /* Direct feedthrough

or port one */

ssSetInputPortRequiredContiguous(S, 0);

Set up the outputs using:

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, width); /* Width of output port

one (index 0) */

3-68

Converting Level 1 C MEX S-Functions to Level 2

• If your S-function has a nonempty mdlInitializeConditions, update it
to the following form:

#define MDL_INITIALIZE_CONDITIONS
static void mdlInitializeConditions(SimStruct *S)
{
}

Otherwise, delete the function.

- Access the continuous states using ssGetContStates. The ssGetX macro
has been removed.

- Access the discrete states using ssGetRealDiscStates(S). The ssGetX
macro has been removed.

- For mixed continuous and discrete state S-functions, the state vector
no longer consists of the continuous states followed by the discrete
states. The states are saved in separate vectors and hence might not
be contiguous in memory.

• The mdlOutputs prototype has changed from

static void mdlOutputs(real_T *y, const real_T *x,
const real_T *u, SimStruct *S, int_T tid)

to

static void mdlOutputs(SimStruct *S, int_T tid)

Since y, x, and u are not explicitly passed in to level-2 S-functions, you
must use

- ssGetInputPortSignal to access inputs

- ssGetOutputPortSignal to access the outputs

- ssGetContStates or ssGetRealDiscStates to access the states

• The mdlUpdate function prototype has changed from

void mdlUpdate(real_T *x, real_T *u, Simstruct *S, int_T tid)

to

3-69

3 Writing S-Functions in C

void mdlUpdate(SimStruct *S, int_T tid)

• If your S-function has a nonempty mdlUpdate, update it to this form:

#define MDL_UPDATE
static void mdlUpdate(SimStruct *S, int_T tid)
{
}

Otherwise, delete the function.

• If your S-function has a nonempty mdlDerivatives, update it to this form:

#define MDL_DERIVATIVES
static void mdlDerivatives(SimStruct *S, int_T tid)
{
}

Otherwise, delete the function.

• Replace all obsolete SimStruct macros. See “Obsolete Macros” on page 3-71
for a complete list of obsolete macros.

• When converting level 1 S-functions to level 2 S-functions, you should build
your S-functions with full (i.e., highest) warning levels. For example, if you
have gcc on a UNIX system, use these options with the mex utility.

mex CC=gcc CFLAGS=-Wall sfcn.c

If your system has Lint, use this code.

lint -DMATLAB_MEX_FILE -I<matlabroot>/simulink/include
-Imatlabroot/extern/include sfcn.c

On a PC, to use the highest warning levels, you must create a project file
inside the integrated development environment (IDE) for the compiler you
are using. Within the project file, define MATLAB_MEX_FILE and add

matlabroot/simulink/include
matlabroot/extern/include

to the path (be sure to build with alignment set to 8).

3-70

Converting Level 1 C MEX S-Functions to Level 2

Obsolete Macros
The following macros are obsolete. Each obsolete macro should be replaced
with the specified macro.

Obsolete Macro Replace with

ssGetU(S), ssGetUPtrs(S) ssGetInputPortSignalPtrs(S,port)

ssGetY(S) ssGetOutputPortRealSignal(S,port)

ssGetX(S) ssGetContStates(S), ssGetRealDiscStates(S)

ssGetStatus(S) Normally not used, but ssGetErrorStatus(S) is
available.

ssSetStatus(S,msg) ssSetErrorStatus(S,msg)

ssGetSizes(S) Specific call for the wanted item (i.e.,
ssGetNumContStates(S))

ssGetMinStepSize(S) No longer supported.

ssGetPresentTimeEvent(S,sti) ssGetTaskTime(S,sti)

ssGetSampleTimeEvent(S,sti) ssGetSampleTime(S,sti)

ssSetSampleTimeEvent(S,t) ssSetSampleTime(S,sti,t)

ssGetOffsetTimeEvent(S,sti) ssGetOffsetTime(S,sti)

ssSetOffsetTimeEvent(S,sti,t) ssSetOffsetTime(S,sti,t)

ssIsSampleHitEvent(S,sti,tid) ssIsSampleHit(S,sti,tid)

ssGetNumInputArgs(S) ssGetNumSFcnParams(S)

ssSetNumInputArgs(S, numInputArgs) ssSetNumSFcnParams(S,numInputArgs)

ssGetNumArgs(S) ssGetSFcnParamsCount(S)

ssGetArg(S,argNum) ssGetSFcnParam(S,argNum)

ssGetNumInputs ssGetNumInputPorts(S) and
ssGetInputPortWidth(S,port)

ssSetNumInputs ssSetNumInputPorts(S,nInputPorts) and
ssSetInputPortWidth(S,port,val)

3-71

3 Writing S-Functions in C

Obsolete Macro Replace with

ssGetNumOutputs ssGetNumOutputPorts(S) and
ssGetOutputPortWidth(S,port)

ssSetNumOutputs ssSetNumOutputPorts(S,nOutputPorts) and
ssSetOutputPortWidth(S,port,val)

3-72

4

Creating C++ S-Functions

The procedure for creating C++ S-functions is nearly the same as that for
creating C S-functions (see Chapter 3, “Writing S-Functions in C”). The
following sections explain the differences.

Source File Format (p. 4-2) Explains the differences between
the source file structure of a C++
S-function and a C S-function.

Making C++ Objects Persistent
(p. 4-6)

How to create C++ objects that
persist across invocations of the
S-function.

Building C++ S-Functions (p. 4-8) How to build a C++ S-function.

4 Creating C++ S-Functions

Source File Format
The format of the C++ source for an S-function is nearly identical to that of
the source for an S-function written in C. The main difference is that you
must tell the C++ compiler to use C calling conventions when compiling the
callback methods. This is necessary because the Simulink simulation engine
assumes that callback methods obey C calling conventions.

To tell the compiler to use C calling conventions when compiling the callback
methods, wrap the C++ source for the S-function callback methods in an
extern "C" statement. The C++ version of the sfun_counter S-function
example (matlabroot/simulink/src/sfun_counter_cpp.cpp) illustrates
usage of the extern "C" directive to ensure that the compiler generates
Simulink-compatible callback methods:

/* File : sfun_counter_cpp.cpp

* Abstract:

*

* Example of an C++ S-function which stores an C++ object in

* the pointers vector PWork.

*

* Copyright 1990-2005 The MathWorks, Inc.

*

*/

#include "iostream.h"

class counter {

double x;

public:

counter() {

x = 0.0;

}

double output(void) {

x = x + 1.0;

return x;

}

};

#ifdef __cplusplus

4-2

Source File Format

extern "C" { // use the C fcn-call standard for all functions

#endif // defined within this scope

#define S_FUNCTION_LEVEL 2

#define S_FUNCTION_NAME sfun_counter_cpp

/*

* Need to include simstruc.h for the definition of the SimStruct and

* its associated macro definitions.

*/

#include "simstruc.h"

/*====================*

* S-function methods *

====================/

/* Function: mdlInitializeSizes ===

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block's characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

/* See sfuntmpl_doc.c for more details on the macros below */

ssSetNumSFcnParams(S, 1); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

/* Return if number of expected != number of actual parameters */

return;

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 0)) return;

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes(S, 1);

4-3

4 Creating C++ S-Functions

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 1); // reserve element in the pointers vector

ssSetNumModes(S, 0); // to store a C++ object

ssSetNumNonsampledZCs(S, 0);

ssSetOptions(S, 0);

}

/* Function: mdlInitializeSampleTimes ===

* Abstract:

* This function is used to specify the sample time(s) for your

* S-function. You must register the same number of sample times as

* specified in ssSetNumSampleTimes.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, mxGetScalar(ssGetSFcnParam(S, 0)));

ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_START /* Change to #undef to remove function */

#if defined(MDL_START)

/* Function: mdlStart ===

* Abstract:

* This function is called once at start of model execution. If you

* have states that should be initialized once, this is the place

* to do it.

*/

static void mdlStart(SimStruct *S)

{

ssGetPWork(S)[0] = (void *) new counter; // store new C++ object in the

} // pointers vector

#endif /* MDL_START */

/* Function: mdlOutputs ===

* Abstract:

* In this function, you compute the outputs of your S-function

* block. Generally outputs are placed in the output vector, ssGetY(S).

4-4

Source File Format

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

counter *c = (counter *) ssGetPWork(S)[0]; // retrieve C++ object from

real_T *y = ssGetOutputPortRealSignal(S,0); // the pointers vector and use

y[0] = c->output(); // member functions of the

} // object

/* Function: mdlTerminate ===

* Abstract:

* In this function, you should perform any actions that are necessary

* at the termination of a simulation. For example, if memory was

* allocated in mdlStart, this is the place to free it.

*/

static void mdlTerminate(SimStruct *S)

{

counter *c = (counter *) ssGetPWork(S)[0]; // retrieve and destroy C++

delete c; // object in the termination

} // function

/*==*

* See sfuntmpl_doc.c for the optional S-function methods *

==/

/*=============================*

* Required S-function trailer *

=============================/

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

#ifdef __cplusplus

} // end of extern "C" scope

#endif

4-5

4 Creating C++ S-Functions

Making C++ Objects Persistent
Your C++ callback methods might need to create persistent C++ objects,
that is, objects that continue to exist after the method exits. For example, a
callback method might need to access an object created during a previous
invocation. Or one callback method might need to access an object created by
another callback method. To create persistent C++ objects in your S-function:

1 Create a pointer work vector to hold pointers to the persistent object
between method invocations:

static void mdlInitializeSizes(SimStruct *S)

{

...

ssSetNumPWork(S, 1); // reserve element in the pointers vector

// to store a C++ object

...

}

2 Store a pointer to each object that you want to be persistent in the pointer
work vector:

static void mdlStart(SimStruct *S)

{

ssGetPWork(S)[0] = (void *) new counter; // store new C++ object in the

} // pointers vector

3 Retrieve the pointer in any subsequent method invocation to access the
object:

static void mdlOutputs(SimStruct *S, int_T tid)

{

counter *c = (counter *) ssGetPWork(S)[0]; // retrieve C++ object from

real_T *y = ssGetOutputPortRealSignal(S,0); // the pointers vector and

y[0] = c->output(); // use member functions of

} // the object

4-6

Making C++ Objects Persistent

4 Destroy the objects when the simulation terminates:

static void mdlTerminate(SimStruct *S)

{

counter *c = (counter *) ssGetPWork(S)[0]; // retrieve and destroy C++

delete c; // object in the termination

} // function

4-7

4 Creating C++ S-Functions

Building C++ S-Functions
Use the MATLAB mex command to build C++ S-functions exactly the way you
use it to build C S-functions. For example, to build the C++ version of the
sfun_counter example, enter

mex sfun_counter_cpp.cpp

at the MATLAB command line.

Note The extension of the source file for a C++ S-function must be .cpp to
ensure that the compiler treats the file’s contents as C++ code.

4-8

5

Creating Ada S-Functions

The following sections explain how to use the Ada programming language
to create S-functions.

Introduction (p. 5-2) Overview of creating Ada
S-functions.

Ada S-Function Source File Format
(p. 5-3)

Source code structure of an Ada
S-function.

Writing Callback Methods in Ada
(p. 5-7)

How to use Ada to implement
S-function callback methods.

Building an Ada S-Function (p. 5-10) Compiling and linking an Ada
S-function.

Example of an Ada S-Function
(p. 5-11)

An Ada version of the times_two
S-function example.

5 Creating Ada S-Functions

Introduction
Simulink allows you to use the Ada programming language to create
S-functions. As with S-functions coded in other programming languages,
Simulink interacts with an Ada S-function by invoking callback methods that
the S-function implements. Each method performs a predefined task, such as
computing block outputs, required to simulate the block whose functionality
the S-function defines. Creating an Ada S-function thus entails writing Ada
implementations of the callback methods required to simulate the S-function
and then compiling and linking the callbacks into a library that Simulink can
load and invoke during simulation. The following sections explain how to
perform these tasks.

5-2

Ada S-Function Source File Format

Ada S-Function Source File Format
To create an Ada S-function, you must create an Ada package that implements
the callback methods required to simulate the S-function. The S-function
package comprises a specification and a body.

Ada S-Function Specification
The specification specifies the methods that the Ada S-function uses and
implements. The specification must specify that the Ada S-function uses the
Simulink package, which defines data types and functions that the S-function
can use to access the internal data structure (SimStruct) that Simulink
uses to store information about the S-function (see Chapter 9, “SimStruct
Functions — By Category”). The specification and body of the Simulink
package reside in the matlabroot/simulink/ada/interface/ directory.

The specification should also specify each callback method that the S-function
implements as an Ada procedure exported to C. The following is an example of
an Ada S-function specification that meets these requirements.

-- The Simulink API for Ada S-Function

with Simulink; use Simulink;

package Times_Two is

-- The S_FUNCTION_NAME has to be defined as a constant

-- string.

S_FUNCTION_NAME : constant String := "times_two";

-- Every S-Function is required to have the

-- "mdlInitializeSizes" method.

-- This method needs to be exported as shown below, with the

-- exported name being "mdlInitializeSizes".

--

procedure mdlInitializeSizes(S : in SimStruct);

pragma Export(C, mdlInitializeSizes, "mdlInitializeSizes");

procedure mdlOutputs(S : in SimStruct; TID : in Integer);

pragma Export(C, mdlOutputs, "mdlOutputs");

end Times_Two;

5-3

5 Creating Ada S-Functions

Ada S-Function Body
The Ada S-Function body provides the implementations of the S-function
callback methods, as illustrated in the following example.

with Simulink; use Simulink;

with Ada.Exceptions; use Ada.Exceptions;

package body Times_Two is

-- Function: mdlInitializeSizes ---

-- Abstract:

-- Setup the input and output port attributes for this

-- S-Function.

--

procedure mdlInitializeSizes(S : in SimStruct) is

begin

-- Set the input port attributes

--

ssSetNumInputPorts(S, 1);

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetInputPortDataType(S, 0, SS_DOUBLE);

ssSetInputPortDirectFeedThrough(S, 0, TRUE);

ssSetInputPortOverWritable(S, 0, FALSE);

ssSetInputPortOptimizationLevel(S, 0, 3);

-- Set the output port attributes

--

ssSetNumOutputPorts(S, 1);

ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetOutputPortDataType(S, 0, SS_DOUBLE);

ssSetOutputPortOptimizationLevel(S, 0, 3);

-- Set the block sample time.

ssSetSampleTime(S, INHERITED_SAMPLE_TIME);

exception

when E : others =>

if ssGetErrorStatus(S) = "" then

5-4

Ada S-Function Source File Format

ssSetErrorStatus(S,

"Exception occured in mdlInitializeSizes. " &

"Name: " & Exception_Name(E) & ", " &

"Message: " & Exception_Message(E) &

" and " & "Information: " &

Exception_Information(E));

end if;

end mdlInitializeSizes;

-- Function: mdlOutputs ---

-- Abstract:

-- Compute the S-Function's output,

-- given its input: y = 2 * u

--

procedure mdlOutputs(S : in SimStruct; TID : in Integer) is

uWidth : Integer := ssGetInputPortWidth(S,0);

U : array(0 .. uWidth-1) of Real_T;

for U'Address use ssGetInputPortSignalAddress(S,0);

yWidth : Integer := ssGetOutputPortWidth(S,0);

Y : array(0 .. yWidth-1) of Real_T;

for Y'Address use ssGetOutputPortSignalAddress(S,0);

begin

if uWidth = 1 then

for Idx in 0 .. yWidth-1 loop

Y(Idx) := 2.0 * U(0);

end loop;

else

for Idx in 0 .. yWidth-1 loop

Y(Idx) := 2.0 * U(Idx);

end loop;

end if;

exception

when E : others =>

if ssGetErrorStatus(S) = "" then

ssSetErrorStatus(S,

5-5

5 Creating Ada S-Functions

"Exception occured in mdlOutputs. " &

"Name: " & Exception_Name(E) & ", " &

"Message: " & Exception_Message(E) & " and " &

"Information: " & Exception_Information(E));

end if;

end mdlOutputs;

end Times_Two;

5-6

Writing Callback Methods in Ada

Writing Callback Methods in Ada
Simulink interacts with an Ada S-function by invoking callback methods that
the S-function implements. This section specifies the callback methods that
an Ada S-function can implement and provides guidelines for implementing
them.

Callbacks Invoked by Simulink
The following diagram shows the callback methods that Simulink invokes
when interacting with an Ada S-function during a simulation and the order in
which Simulink invokes them.

5-7

5 Creating Ada S-Functions

Note When interacting with Ada S-functions, Simulink invokes only a subset
of the callback methods that it invokes for C S-functions. The “Languages
Supported” section of the reference page for each callback method specifies
whether Simulink invokes that callback when interacting with an Ada
S-function.

5-8

Writing Callback Methods in Ada

Implementing Callbacks
Simulink defines in a general way the task of each callback. The S-function
is free to perform the task according to the functionality it implements. For
example, Simulink specifies that the S-function’s mdlOutputs method must
compute that block’s outputs at the current simulation time. It does not
specify what those outputs must be. This callback-based API allows you to
create S-functions, and hence custom blocks, that meet your requirements.

Chapter 8, “S-Function Callback Methods — Alphabetical List” explains the
purpose of each callback and provides guidelines for implementing them.
“C S-Function Examples” on page 1-23 provides examples on using these
callbacks to implement specific S-function features, such as the ability to
handle multiple signal data types.

Omitting Optional Callback Methods
The method mdlInitializeSizes is the only callback that an Ada S-function
must implement. The source for your Ada S-function needs to include
implementations only for callbacks that it must handle. If the source for your
S-function does not include an implementation for a particular callback, the
mex tool that builds the S-function (see “Building an Ada S-Function” on page
5-10) provides a stub implementation.

SimStruct Functions
Simulink provides a set of functions that enable an Ada S-function to access
the internal data structure (SimStruct) that Simulink maintains for the
S-function. These functions consist of Ada wrappers around the SimStruct
macros used to access the SimStruct from a C S-function (see Chapter 9,
“SimStruct Functions — By Category”). Simulink provides Ada wrappers for
a substantial subset of the SimStruct macros. The “Languages Supported”
section of the reference page for a macro specifies whether it has an Ada
wrapper.

5-9

5 Creating Ada S-Functions

Building an Ada S-Function
To use your Ada S-function with Simulink, you must build a MATLAB
executable (MEX) file from the Ada source code for the S-function. Use the
MATLAB mex command to perform this step.

The mex syntax for building an Ada S-function MEX-file is

mex [-v] [-g] -ada SFCN.ads

where SFCN.ads is the name of the S-function’s package specification, -g
creates a debuggable MEX-file, and -v causes Simulink to print each compile
step and final link step during the build process.

For example, to build the times_two S-function example that comes with
Simulink, enter the command

mex -ada times_two.ads

Ada Compiler Requirements
To build a MEX-file from Ada source code, using the mex tool, you must
have previously installed a copy of Version 3.12 (or higher) of the GNAT
Ada95 compiler on your system. You can obtain the latest Solaris,
Windows, and GNU-Linux versions of the compiler at the GNAT ftp site
(ftp://cs.nyu.edu/pub/gnat). Make sure that the compiler executable is in
the MATLAB command path so that the mex tool can find it.

The GNAT Ada95 compiler package used to include gnatdll.exe, a tool
for building DLLs on Windows. This tool, which is required to build Ada
MEX-files on Windows, now comes as part of a separate gnatwin package
containing Windows-specific files. If you want to build Ada S-functions on a
Windows system, you must download and install the gnatwin package as
well as the GNAT Ada95 compiler.

5-10

Example of an Ada S-Function

Example of an Ada S-Function
This section presents an example of a basic Ada S-function that you can
use as a model when creating your own Ada S-functions. The example
is the times_two S-function example that comes with Simulink (see
matlabroot/simulink/ada/examples/times_two/times_two.ads and
matlabroot/simulink/ada/examples/times_two/times_two.adb). This
S-function outputs twice its input.

The following model uses the times_two S-function to double the amplitude
of a sine wave and plot it in a scope.

The block dialog for the S-function specifies times_two as the S-function
name; the parameters field is empty.

The times_two S-function contains the S-function callback methods shown
in this figure.

5-11

5 Creating Ada S-Functions

The source code for the times_two S-function comprises two parts:

• Package specification

• Package body

The following sections explain each of these parts.

Times_two Package Specification
The times_two package specification, times_two.ads, contains the following
code.

-- The Simulink API for Ada S-Function

with Simulink; use Simulink;

package Times_Two is

-- The S_FUNCTION_NAME has to be defined as a constant string. Note that

-- the name of the S-Function (ada_times_two) is different from the name

-- of this package (times_two). We do this so that it is easy to identify

-- this example S-Function in the MATLAB workspace. Normally you would use

-- the same name for S_FUNCTION_NAME and the package.

--

S_FUNCTION_NAME : constant String := "ada_times_two";

-- Every S-Function is required to have the "mdlInitializeSizes" method.

-- This method needs to be exported as shown below, with the exported name

-- being "mdlInitializeSizes".

--

procedure mdlInitializeSizes(S : in SimStruct);

pragma Export(C, mdlInitializeSizes, "mdlInitializeSizes");

procedure mdlOutputs(S : in SimStruct; TID : in Integer);

pragma Export(C, mdlOutputs, "mdlOutputs");

end Times_Two;

5-12

Example of an Ada S-Function

The package specification begins by specifying that the S-function uses the
Simulink package.

with Simulink; use Simulink;

The Simulink package defines Ada procedures for accessing the internal
data structure (SimStruct) that Simulink maintains for each S-function (see
Chapter 9, “SimStruct Functions — By Category”).

Next the specification specifies the name of the S-function.

S_FUNCTION_NAME : constant String := "ada_times_two";

The name ada_times_two serves to distinguish the MEX-file generated from
Ada source from those generated from the times_two source coded in other
languages.

Finally the specification specifies the callback methods implemented by the
times_two S-function.

procedure mdlInitializeSizes(S : in SimStruct);
pragma Export(C, mdlInitializeSizes, "mdlInitializeSizes");

procedure mdlOutputs(S : in SimStruct; TID : in Integer);
pragma Export(C, mdlOutputs, "mdlOutputs");

The specification specifies that the Ada compiler should compile each method
as a C-callable function. This is because the Simulink engine assumes that
callback methods are C functions.

Note When building an Ada S-function, the MATLAB mex tool uses the
package specification to determine the callbacks that the S-function does not
implement. It then generates stubs for the nonimplemented methods.

5-13

5 Creating Ada S-Functions

Times_two Package Body
The times_two package body, times_two.adb, contains

with Simulink; use Simulink;

with Ada.Exceptions; use Ada.Exceptions;

package body Times_Two is

-- Function: mdlInitializeSizes ---

-- Abstract:

-- Setup the input and output port attrubouts for this S-Function.

--

procedure mdlInitializeSizes(S : in SimStruct) is

begin

-- Set the input port attributes

--

ssSetNumInputPorts(S, 1);

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetInputPortDataType(S, 0, SS_DOUBLE);

ssSetInputPortDirectFeedThrough(S, 0, TRUE);

ssSetInputPortOverWritable(S, 0, FALSE);

ssSetInputPortOptimizationLevel(S, 0, 3);

-- Set the output port attributes

--

ssSetNumOutputPorts(S, 1);

ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetOutputPortDataType(S, 0, SS_DOUBLE);

ssSetOutputPortOptimizationLevel(S, 0, 3);

-- Set the block sample time.

ssSetSampleTime(S, INHERITED_SAMPLE_TIME);

exception

when E : others =>

if ssGetErrorStatus(S) = "" then

ssSetErrorStatus(S,

"Exception occured in mdlInitializeSizes. " &

"Name: " & Exception_Name(E) & ", " &

5-14

Example of an Ada S-Function

"Message: " & Exception_Message(E) & " and " &

"Information: " & Exception_Information(E));

end if;

end mdlInitializeSizes;

-- Function: mdlOutputs ---

-- Abstract:

-- Compute the S-Function's output, given its input: y = 2 * u

--

procedure mdlOutputs(S : in SimStruct; TID : in Integer) is

uWidth : Integer := ssGetInputPortWidth(S,0);

U : array(0 .. uWidth-1) of Real_T;

for U'Address use ssGetInputPortSignalAddress(S,0);

yWidth : Integer := ssGetOutputPortWidth(S,0);

Y : array(0 .. yWidth-1) of Real_T;

for Y'Address use ssGetOutputPortSignalAddress(S,0);

begin

if uWidth = 1 then

for Idx in 0 .. yWidth-1 loop

Y(Idx) := 2.0 * U(0);

end loop;

else

for Idx in 0 .. yWidth-1 loop

Y(Idx) := 2.0 * U(Idx);

end loop;

end if;

exception

when E : others =>

if ssGetErrorStatus(S) = "" then

ssSetErrorStatus(S,

"Exception occured in mdlOutputs. " &

"Name: " & Exception_Name(E) & ", " &

"Message: " & Exception_Message(E) & " and " &

"Information: " & Exception_Information(E));

end if;

5-15

5 Creating Ada S-Functions

end mdlOutputs;

end Times_Two;

The package body contains implementations of the callback methods needed
to implement the times_two example.

mdlInitializeSizes
Simulink calls mdlInitializeSizes to inquire about the number of input and
output ports, the sizes of the ports, and any other objects (such as the number
of states) needed by the S-function.

The times_two implementation of mdlInitializeSizes uses SimStruct
functions defined in the Simulink package to specify the following size
information:

• One input port and one output port

The widths of the input and output port are dynamically sized. This tells
Simulink that the S-function can accept a signal of any width. Note that
the default handling for dynamically sized S-functions for this case (one
input and one output) is that the input and output widths are equal.

• One sample time

Finally the method provides an exception handler to handle any errors that
occur in invoking the SimStruct functions.

mdlOutputs
Simulink calls mdlOutputs at each time step to calculate a block’s outputs.
The times_two implementation of mdlOutputs takes the input, multiplies it
by 2, and writes the answer to the output.

The times_two implementation of the mdlOutputs method uses the SimStruct
functions ssGetInputPortWidth and ssGetInputPortSignalAddress to access
the input signal.

uWidth : Integer := ssGetInputPortWidth(S,0);
U : array(0 .. uWidth-1) of Real_T;

5-16

Example of an Ada S-Function

for U'Address use ssGetInputPortSignalAddress(S,0);

Similarly, the mdlOutputs method uses the functions ssGetOutputPortWidth
and ssGetOutputPortSignalAddress to access the output signal.

yWidth : Integer := ssGetOutputPortWidth(S,0);
Y : array(0 .. yWidth-1) of Real_T;
for Y'Address use ssGetOutputPortSignalAddress(S,0);

Finally the method loops over the inputs to compute the outputs.

Building the Times_two Example
To build this S-function into Simulink, enter

mex -ada times_two.abs

at the command line.

5-17

5 Creating Ada S-Functions

5-18

6

Creating Fortran
S-Functions

The following sections explain how to use the Fortran programming language
to create S-functions.

Introduction (p. 6-2) Overview of approaches to writing
Fortran S-functions.

Creating Level 1 Fortran
S-Functions (p. 6-3)

Describes a purely Fortran approach
to creating an S-function.

Creating Level 2 Fortran
S-Functions (p. 6-8)

Describes a hybrid C/Fortran
approach to writing an S-function
that enables creation of more capable
blocks.

Porting Legacy Code (p. 6-18) How to wrap an S-function around
existing Fortran code.

6 Creating Fortran S-Functions

Introduction
There are two main strategies to executing Fortran code from Simulink. One
is from a Level 1 Fortran-MEX (F-MEX) S-function, the other is from a Level
2 gateway S-function written in C. Each has its advantages and both can be
incorporated into code generated by Real-Time Workshop.

Level 1 Versus Level 2 S-Functions
The original S-function interface was called the Level 1 API. As the
capabilities of Simulink grew, the S-function API was rearchitected into
the more extensible Level 2 API. This allows S-functions to have all the
capabilities of a full Simulink model (except automatic algebraic loop
identification and solving) and to grow as Simulink grows.

Note The Level 1 API supports creation of S-functions having only
continuous sample time. If you want to create a Fortran S-function with a
discrete sample time, you must use the Level 2 API.

6-2

Creating Level 1 Fortran S-Functions

Creating Level 1 Fortran S-Functions

Fortran MEX Template File
A template file for Fortran MEX S-functions is located at
matlabroot/simulink/src/sfuntmpl_fortran.F. The template file compiles
as is and copies the input to the output.

To use the template to create a new Fortran S-function:

1 Create a copy under another filename.

2 Edit the copy to perform the operations you need.

3 Compile the edited file into a MEX-file, using the mex command.

4 Include the MEX-file in your model, using the S-Function block.

Example of a Level 1 Fortran S-Function
The example file, matlabroot/simulink/src/sfun_timestwo_for.F,
implements an S-function that multiplies its input by 2.

C

C File: SFUN_TIMESTWO_FOR.F

C

C Abstract:

C A sample Level 1 FORTRAN representation of a

C timestwo S-function.

C

C The basic mex command for this example is:

C

C >> mex sfun_timestwo_for.F simulink.F

C

C Copyright 1990-2002 The MathWorks, Inc.

C

C

C

C===

C Function: SIZES

C

6-3

6 Creating Fortran S-Functions

C Abstract:

C Set the size vector.

C

C SIZES returns a vector which determines model

C characteristics. This vector contains the

C sizes of the state vector and other

C parameters. More precisely,

C SIZE(1) number of continuous states

C SIZE(2) number of discrete states

C SIZE(3) number of outputs

C SIZE(4) number of inputs

C SIZE(5) number of discontinuous roots in

C the system

C SIZE(6) set to 1 if the system has direct

C feedthrough of its inputs,

C otherwise 0

C

C===

C

SUBROUTINE SIZES(SIZE)

C .. Array arguments ..

INTEGER*4 SIZE(*)

C .. Parameters ..

INTEGER*4 NSIZES

PARAMETER (NSIZES=6)

SIZE(1) = 0

SIZE(2) = 0

SIZE(3) = 1

SIZE(4) = 1

SIZE(5) = 0

SIZE(6) = 1

RETURN

END

C

C===

C

C Function: OUTPUT

6-4

Creating Level 1 Fortran S-Functions

C

C Abstract:

C Perform output calculations for continuous

C signals.

C

C===

C .. Parameters ..

SUBROUTINE OUTPUT(T, X, U, Y)

REAL*8 T

REAL*8 X(*), U(*), Y(*)

Y(1) = U(1) * 2.0

RETURN

END

C

C===

C

C Stubs for unused functions.

C

C===

SUBROUTINE INITCOND(X0)

REAL*8 X0(*)

C --- Nothing to do.

RETURN

END

SUBROUTINE DERIVS(T, X, U, DX)

REAL*8 T, X(*), U(*), DX(*)

C --- Nothing to do.

RETURN

END

SUBROUTINE DSTATES(T, X, U, XNEW)

REAL*8 T, X(*), U(*), XNEW(*)

C --- Nothing to do.

RETURN

END

6-5

6 Creating Fortran S-Functions

SUBROUTINE DOUTPUT(T, X, U, Y)

REAL*8 T, X(*), U(*), Y(*)

C --- Nothing to do.

RETURN

END

SUBROUTINE TSAMPL(T, X, U, TS, OFFSET)

REAL*8 T,TS,OFFSET,X(*),U(*)

C --- Nothing to do.

RETURN

END

SUBROUTINE SINGUL(T, X, U, SING)

REAL*8 T, X(*), U(*), SING(*)

C --- Nothing to do.

RETURN

END

A Level 1 S-function’s input/output is limited to using the REAL*8 data type,
(DOUBLE PRECISION), which is equivalent to a double in C. Of course, the
internal calculations can use whatever data types you need.

To see how this S-function works, enter

sfcndemo_timestwo_for

at the MATLAB prompt and run the model.

Inline Code Generation Example
The capabilities of Fortran MEX S-functions can be fully inlined using
a Target Language Compiler block target file. The block target file
is a self-contained definition of how to inline the block’s functionality
directly into the various portions of the generated code for a Simulink
model. Real-Time Workshop users can use the sample block target file
matlabroot/toolbox/simulink/blocks/tlc_c/sfun_timestwo_for.tlc
to generate inlined code for sfcndemo_timestwo_for.mdl. If you want
to learn how to inline your own Fortran MEX-file, see the example in

6-6

Creating Level 1 Fortran S-Functions

“Inlining S-Functions” in the Real-Time Workshop Target Language Compiler
documentation.

6-7

6 Creating Fortran S-Functions

Creating Level 2 Fortran S-Functions
To use the features of a level 2 S-function with Fortran code, you must write a
skeleton S-function in C that has code for interfacing to Simulink and also
calls your Fortran code.

Using the C MEX S-function as a gateway is quite simple if you are writing
the Fortran code from scratch. If instead your Fortran code already exists as a
stand-alone simulation, there is some work to be done to identify parts of the
code that need to be registered with Simulink, such as identifying continuous
states if you are using variable-step solvers or getting rid of static variables if
you want to have multiple copies of the S-function in a Simulink model (see
“Porting Legacy Code” on page 6-18).

Template File
The file contains a template for creating a C MEX-file S-function that invokes
a Fortran subroutine in its mdlOutputs method. It works with a simple
Fortran subroutine if you modify the Fortran subroutine name in the code.

C/Fortran Interfacing Tips
The following are some tips for creating the C-to-Fortran gateway S-function.

MEX Environment
Remember that mex -setup needs to find both the MATLAB C and the
Fortran compilers, but it can only work with one of these compilers at a time.
If you install or change compilers, you must run mex -setup in between other
mex commands.

Test the installation and setup using sample MEX-files from the MATLAB C
and Fortran MEX examples in matlabroot/extern/examples/mex, as well as
Simulink examples, which are located in matlabroot/simulink/src.

The example C source code file yprime.c is included in the
matlabroot/extern/examples/mex directory. If using a C compiler on
Windows, test the mex setup using the following commands.

6-8

Creating Level 2 Fortran S-Functions

cd([matlabroot '\extern\examples\mex'])
mex yprime.c

The Fortran counterparts to this example, yprimef.F and yprimefg.F are
also found in matlabroot/extern/examples/mex. To test the installation of a
Fortran compiler, select a Fortran compiler using the mex -setup command
then type the following at the MATLAB prompt.

cd([matlabroot '\extern\examples\mex'])
mex yprimef.f yprimefg.f

For more information, see Building MEX-Files in the MATLAB External
Interfaces Reference Guide.

Compiler Compatibility
Your C and Fortran compilers need to use the same object format. If you
use the compilers explicitly supported by the mex command this is not a
problem. When you use the C gateway to Fortran, it is possible to use Fortran
compilers not supported by the mex command, but only if the object file format
is compatible with the C compiler format. Common object formats include
ELF and COFF.

The compiler must also be configurable so that the caller cleans up the stack
instead of the callee. Compaq Visual Fortran (formerly known as Digital
Fortran) is one compiler whose default stack cleanup is the callee. However,
Intel Visual Fortran (the replacement for Compaq Visual Fortran) has the
default stack cleanup as the caller.

Symbol Decorations
Symbol decorations can cause run-time errors. For example, g77 decorates
subroutine names with a trailing underscore when in its default configuration.
You can either recognize this and adjust the C function prototype or alter
the Fortran compiler’s name decoration policy via command-line switches, if
the compiler supports this. See the Fortran compiler manual about altering
symbol decoration policies.

6-9

6 Creating Fortran S-Functions

If all else fails, use utilities such as od (octal dump) to display the symbol
names. For example, the command

od -s 2 <file>

lists strings and symbols in binary (.obj) files.

These binary utilities can be obtained for Windows as well. MKS is one
company that has commercial versions of powerful UNIX utilities, although
most can also be obtained free on the Web. hexdump is another common
program for viewing binary files. As an example, here is the output of

od -s 2 sfun_atmos_for.o

on Linux.

0000115 E¤
0000136 E¤
0000271 E¤
0000467 ˙ E¤@
0000530 ˙ E¤
0000575 E¤ E 5@
0001267 Cf VC- :C
0001323 :|.-:8˘ #8 Kw6
0001353 ?333@
0001364 333
0001414 01.01
0001425 GCC: (GNU) egcs-2.91.66 19990314/Linux
0001522 .symtab
0001532 .strtab
0001542 .shstrtab
0001554 .text
0001562 .rel.text
0001574 .data
0001602 .bss
0001607 .note
0001615 .comment
0003071 sfun_atmos_for.for
0003101 gcc2_compiled.
0003120 rearth.0
0003131 gmr.1

6-10

Creating Level 2 Fortran S-Functions

0003137 htab.2
0003146 ttab.3
0003155 ptab.4
0003164 gtab.5
0003173 atmos_
0003207 exp
0003213 pow_d

Note that Atmos has been changed to atmos_, which the C program must
call to be successful.

With Compaq Visual Fortran and Intel Visual Fortran on 32-bit Windows
machines, the symbol is suppressed, so that Atmos becomes ATMOS (no
underscore).

Fortran Math Library
Fortran math library symbols might not match C math library symbols.
For example, A^B in Fortran calls library function pow_dd, which is not in
the C math library. In these cases, you must tell mex to link in the Fortran
math library. For gcc environments, these routines are usually found in
/usr/local/lib/libf2c.a, /usr/lib/libf2c.a, or equivalent.

The mex command becomes

mex -L/usr/local/lib -lf2c cmex_c_file fortran_object_file

Note On UNIX, the -lf2c option follows the conventional UNIX library
linking syntax, where -l is the library option itself and f2c is the unique part
of the library file’s name, libf2c.a. Be sure to use the -L option for the library
search path, because -I is only followed while searching for include files.

The f2c package can be obtained for Windows and UNIX environments from
the Internet. The file libf2c.a is usually part of g77 distributions, or else the
file is not needed as the symbols match. In obscure cases, it must be installed
separately, but even this is not difficult once the need for it is identified.

6-11

6 Creating Fortran S-Functions

On 32-bit Windows machines, using Microsoft Visual C/C++ and Compaq
Visual Fortran 6.0 (formerly known as Digital Fortran), this example can
be compiled using the following mex commands (each command is on one
line and matlabroot should be replaced with the path to the MATLAB root
directory. Note that mex -setup must be run to return to the C compiler
before executing the second command. DF_ROOT is the name of the system’s
environment variable that points to the Compaq Visual Fortran root directory
and may vary on different computers.)

mex -v COMPFLAGS#"$COMPFLAGS /iface:cref" -c sfun_atmos_sub.F
-f matlabroot\bin\win32\mexopts\cvf66opts.bat
!mex -v LINKFLAGS#"$LINKFLAGS dformd.lib dfconsol.lib dfport.lib
/LIBPATH:$DF_ROOT\DF98\LIB" sfun_atmos.c sfun_atmos_sub.obj

On 32-bit Windows machines, using Microsoft Visual C/C++ and Intel® Visual
Fortran 9.0 (formerly known as Compaq Visual Fortran), this example can be
compiled using the following mex commands (each command is on one line).

mex -v -c sfun_atmos_sub.F -f ..\..\bin\win32\mexopts\
intelf90opts.bat
!mex -v -L"%IFORT_COMPILER90%\IA32\LIB" -llibifcoremd
-lifconsol -lifportmd -llibmmd -llibirc sfun_atmos.c
sfun_atmos_sub.obj

On 64-bit Windows machines, using Microsoft Visual C/C++ and Intel® Visual
Fortran 9.0 (formerly known as Compaq Visual Fortran), this example can be
compiled using the following mex commands (each command is on one line).

mex -v -c sfun_atmos_sub.F -f ..\..\bin\win64\mexopts\
intelf90opts.bat
!mex -v -L"%IFORT_COMPILER90%\EM64T\LIB" -llibifcoremd
-lifconsol -lifportmd -llibmmd -llibirc sfun_atmos.c
sfun_atmos_sub.obj

CFortran
Or you can try using CFortran to create an interface. CFortran is a tool for
automated interface generation between C and Fortran modules, in either
direction. Search the Web for cfortran or visit

6-12

Creating Level 2 Fortran S-Functions

http://www-zeus.desy.de/~burow/cfortran/

for downloading.

Obtaining a Fortran Compiler
On Windows, using Visual C/C++ with Fortran is best done with Intel®
Visual Fortran, Compaq Visual Fortran, Absoft, Lahey, or other third-party
compilers. See Intel (www.intel.com) for Windows and Linux compilers, see
Absoft (www.absoft.com) for Windows, Linux, and Sun compilers, and see
Lahey (www.lahey.com) for more choices in Windows Fortran compilers.

For Sun (Solaris) and other commercial UNIX platforms, you can purchase
the computer vendor’s Fortran compiler, a third-party Fortran such as Absoft,
or even use the Gnu Fortran port for that platform (if available).

As long as the compiler can output the same object (.o) format as the
platform’s C compiler, the Fortran compiler will work with the gateway C
MEX S-function technique.

Gnu Fortran (g77) can be obtained free for several platforms from many
download sites, including tap://www.redhat.com in the download area. A
useful keyword on search engines is g77.

Constructing the Gateway
The mdlInitializeSizes() and mdlInitializeSampleTimes() methods are
coded in C. It is unlikely that you will need to call Fortran routines from
these S-function methods. In the simplest case, the Fortran is called only
from mdlOutputs().

Simple Case
The Fortran code must at least be callable in one-step-at-a-time fashion. If
the code doesn’t have any states, it can be called from mdlOutputs() and no
mdlDerivatives() or mdlUpdate() method is required.

Code with States
If the code has states, you must decide whether the Fortran code can support
a variable-step solver or not. For fixed-step solver only support, the C gateway

6-13

http://www.intel.com/cd/software/products/asmo-na/eng/compilers/index.htm
http://www.absoft.com
http://www.absoft.com

6 Creating Fortran S-Functions

consists of a call to the Fortran code from mdlUpdate(), and outputs are
cached in an S-function DWork vector so that subsequent calls by Simulink
into mdlOutputs() will work properly and the Fortran code won’t be called
until the next invocation of mdlUpdate(). In this case, the states in the code
can be stored however you like, typically in the work vector or as discrete
states in Simulink.

If instead the code needs to have continuous time states with support for
variable-step solvers, the states must be registered and stored with Simulink
as doubles. You do this in mdlInitializeSizes() (registering states), then
the states are retrieved and sent to the Fortran code whenever you need to
execute it. In addition, the main body of code has to be separable into a call
form that can be used by mdlDerivatives() to get derivatives for the state
integration and also by the mdlOutputs() and mdlUpdate() methods as
appropriate.

Setup Code
If there is a lengthy setup calculation, it is best to make this part of the code
separable from the one-step-at-a-time code and call it from mdlStart().
This can either be a separate SUBROUTINE called from mdlStart() that
communicates with the rest of the code through COMMON blocks or argument
I/O, or it can be part of the same piece of Fortran code that is isolated by an
IF-THEN-ELSE construct. This construct can be triggered by one of the input
arguments that tells the code if it is to perform either the setup calculations
or the one-step calculations.

SUBROUTINE Versus PROGRAM
To be able to call Fortran from Simulink directly without having to launch
processes, etc., you must convert a Fortran PROGRAM into a SUBROUTINE. This
consists of three steps. The first is trivial; the second and third can take
a bit of examination.

1 Change the line PROGRAM to SUBROUTINE subName.

Now you can call it from C using C function syntax.

2 Identify variables that need to be inputs and outputs and put them in the
SUBROUTINE argument list or in a COMMON block.

6-14

Creating Level 2 Fortran S-Functions

It is customary to strip out all hard-coded cases and output dumps. In
the Simulink environment, you want to convert inputs and outputs into
block I/O.

3 If you are converting a stand-alone simulation to work inside Simulink,
identify the main loop of time integration and remove the loop and, if you
want Simulink to integrate continuous states, remove any time integration
code. Leave time integrations in the code if you intend to make a discrete
time (sampled) S-function.

Arguments to a SUBROUTINE
Most Fortran compilers generate SUBROUTINE code that passes arguments by
reference. This means that the C code calling the Fortran code must use
only pointers in the argument list.

PROGRAM ...

becomes

SUBROUTINE somename(U, X, Y)

A SUBROUTINE never has a return value. You manage I/O by using some of the
arguments for input, the rest for output.

Arguments to a FUNCTION
A FUNCTION has a scalar return value passed by value, so a calling C program
should expect this. The argument list is passed by reference (i.e., pointers)
as in the SUBROUTINE.

If the result of a calculation is an array, then you should use a subroutine, as
a FUNCTION cannot return an array.

Interfacing to COMMON Blocks
While there are several ways for Fortran COMMON blocks to be visible to C code,
it is often recommended to use an input/output argument list to a SUBROUTINE
or FUNCTION. If the Fortran code has already been written and uses COMMON
blocks, it is a simple matter to write a small SUBROUTINE that has an
input/output argument list and copies data into and out of the COMMON block.

6-15

6 Creating Fortran S-Functions

The procedure for copying in and out of the COMMON block begins with a write
of the inputs to the COMMON block before calling the existing SUBROUTINE. The
SUBROUTINE is called, then the output values are read out of the COMMON block
and copied into the output variables just before returning.

Example C MEX S-Function Calling Fortran Code
The subroutine Atmos is in file matlabroot/simulink/src/sfun_atmos_sub.F.
This subroutine calculates the standard atmosphere up to 86 kilometers. The
subroutine has four arguments, as shown by the file’s subroutine line.

SUBROUTINE Atmos(alt, sigma, delta, theta)

The gateway C MEX S-function is matlabroot/simulink/src/sfun_atmos.c,
The Fortran subroutine is declared at the beginning of the C gateway file.

/*
* Windows uses upper case for Fortran external symbols
*/

#ifdef _WIN32
#define atmos_ ATMOS
#endif

extern void atmos_(float *alt,
float *sigma,
float *delta,
float *theta);

The Fortran subroutine can then be called in the mdlOutputs callback using
pass-by-reference for the arguments.

/* call the Fortran routine using pass-by-reference */
atmos_(&falt, &fsigma, &fdelta, &ftheta);

The gateway is built on UNIX using the command

mex -L/usr/local/lib -lf2c sfun_atmos.c sfun_atmos_sub.o

On a 32-bit Windows machine using Microsoft Visual C/C++ and Compaq
Visual Fortran 6.6, there are separate commands to compile the Fortran
file and then link it to the C gateway file. Each command is on one line

6-16

Creating Level 2 Fortran S-Functions

and matlabroot should be replaced with the path to the MATLAB root
directory. Note that mex -setup must be executed to return to the C compiler
before executing the second command. DF_ROOT is the name of the system’s
environment variable that points to the Compaq Visual Fortran root directory
and may vary on different computers.

>> mex -v COMPFLAGS#"$COMPFLAGS /iface:cref" -c sfun_atmos_sub.F

-f matlabroot\bin\win32\mexopts\cvf66opts.bat

>> !mex -v LINKFLAGS#"$LINKFLAGS dformd.lib dfconsol.lib dfport.lib

/LIBPATH:$DF_ROOT\DF98\LIB" sfun_atmos.c sfun_atmos_sub.obj

Note If the linker finds multiple C libraries, you might need to add the option
/NODEFAULTLIB:libc.lib to the command to avoid an error. For example,
!mex -v /NODEFAULTLIB:libc.lib LINKFLAGS#"$LINKFLAGS dformd.lib
dfconsol.lib dfport.lib /LIBPATH:$DF_ROOT\DF98\LIB" sfun_atmos.c
sfun_atmos_sub.obj.

On some UNIX systems where the C and Fortran compilers were installed
separately (or aren’t aware of each other), you might need to reference the
library libf2c.a. To do this, use the -lf2c flag.

UNIX only: if the libf2c.a library isn’t on the library path, you need to add
the path to the mex process explicitly with the -L command. For example:

mex -L/usr/local/lib/ -lf2c sfun_atmos.c sfun_atmos_sub.o

This sample is prebuilt and is on the MATLAB search path already, so you
can see it working by opening the sample model sfcndemo_atmos.mdl. Enter

sfcndemo_atmos

at the command prompt, or to get all the S-function demos for Simulink, type
sfcndemos at the MATLAB prompt. Note, the S-function has three dialog
parameters as specified by the C gateway function. These parameters include
a reference temperature, pressure, an density. Default values are already
entered into the example MDL-file.

6-17

6 Creating Fortran S-Functions

Porting Legacy Code

Find the States
If a variable-step solver is being used, it is critical that all continuous
states are identified in the code and put into the Simulink state vector for
integration instead of being integrated by the Fortran code. Likewise, all
derivative calculations must be made available separately to be called from
the mdlDerivatives() method in the S-function. Without these steps, any
Fortran code with continuous states will not be compatible with variable-step
solvers if the S-function is registered as a continuous block with continuous
states.

Telltale signs of implicit advancement are incremented variables such as
M=M+1 or X=X+0.05. If the code has many of these constructs and you
determine that it is impractical to recode the source so as not to “ratchet
forward,” you might need to try another approach using fixed-step solvers.

If it is impractical to find all the implicit states and to separate out the
derivative calculations for Simulink, another approach can be used, but
you are limited to using fixed-step solvers. The technique here is to call
the Fortran code from the mdlUpdate() method so the Fortran code is only
executed once per Simulink major integration step. Any block outputs must
be cached in a work vector so that mdlOutputs() can be called as often
as needed and output the values from the work vector instead of calling
the Fortran routine again (causing it to inadvertently advance time). See
matlabroot/simulink/src/sfuntmpl_gate_fortran.c for an example that
uses DWork vectors.

Sample Times
If the code has an implicit step size in its algorithm, coefficients,
etc., ensure that you register the proper discrete sample time in the
mdlInitializeSampleTimes() S-function method and only change the block’s
output values from the mdlUpdate() method.

Multiple Instances
If you plan to have multiple copies of this S-function used in one
Simulink model, you need to allocate storage for each copy of the

6-18

Porting Legacy Code

S-function in the model. The recommended approach is to use
DWork vectors. See matlabroot/simulink/include/simstruc.h and
matlabroot/simulink/src/sfuntmpl_doc.c for details on allocating
data-typed work vectors.

Use Flints if Needed
Use flints (floating-point ints) to keep track of time. Flints (for IEEE-754
floating-point numerics) have the useful property of not accumulating
roundoff error when adding and subtracting flints. Using flint variables
in DOUBLE PRECISION storage (with integer values) avoids roundoff error
accumulation that would accumulate when floating-point numbers are added
together thousands of times.

DOUBLE PRECISION F
:
:

F = F + 1.0
TIME = 0.003 * F

This technique avoids a common pitfall in simulations.

Considerations for Real Time
Since very few Fortran applications are used in a real-time environment, it is
common to come across simulation code that is incompatible with a real-time
environment. Common failures include unbounded (or large) iterations and
sporadic but time-intensive side calculations. You must deal with these
directly if you expect to run in real time.

Conversely, it is still perfectly good practice to have iterative or sporadic
calculations if the generated code is not being used for a real-time application.

6-19

6 Creating Fortran S-Functions

6-20

7

Implementing Block
Features

The following sections explain how to use S-function callback methods to
implement various block features.

Dialog Parameters (p. 7-2) How to process parameters passed
via the S-function block’s dialog box.

Run-Time Parameters (p. 7-7) How to create and use run-time
parameters.

Creating Input and Output Ports
(p. 7-12)

How to create input and output ports
on a block.

Custom Data Types (p. 7-18) How to create custom data types for
the values of a block’s signals and
parameters.

Sample Times (p. 7-20) How to specify the rate or rates at
which your block operates.

Work Vectors (p. 7-36) How to create and use work vectors.

Function-Call Subsystems (p. 7-44) How to create a function-call
subsystem.

Processing Frame-Based Signals
(p. 7-49)

How to create an S-function that
process frame-based signals.

Handling Errors (p. 7-52) How to handle errors in an
S-function.

S-Function Examples (p. 7-56) Examples of S-functions.

7 Implementing Block Features

Dialog Parameters
A user can pass parameters to an S-function at the start of and, optionally,
during the simulation, using the S-Function parameters field of the
block’s dialog box. Such parameters are called dialog box parameters to
distinguish them from run-time parameters created by the S-function to
facilitate code generation (see “Run-Time Parameters” on page 7-7). Simulink
stores the values of the dialog box parameters in the S-function’s SimStruct
structure. Simulink provides callback methods and SimStruct macros that
allow the S-function to access and check the parameters and use them in
the computation of the block’s output.

If you want your S-function to be able to use dialog parameters, you must
perform the following steps when you create the S-function:

1 Determine the order in which the parameters are to be specified in the
block’s dialog box.

2 Access these input arguments in the S-function using the ssGetSFcnParam
macro.

Specify S as the first argument and the relative position of the parameter
in the list entered on the dialog box (0 is the first position) as the second
argument. The ssGetSFcnParam macro returns a pointer to the mxArray
containing the parameter. You can use ssGetDTypeIdFromMxArray to get the
data type of the parameter.

For example, in matlabroot/simulink/src/sfun_runtime1.c, the
following #define statements at the beginning of the S-function specify
the order of three dialog box parameters and access their values on the
block’s dialog.

#define SIGNS_IDX 0

#define SIGNS_PARAM(S) ssGetSFcnParam(S,SIGNS_IDX) /* First parameter */

#define GAIN_IDX 1

#define GAIN_PARAM(S) ssGetSFcnParam(S,GAIN_IDX) /* Second parameter */

#define OUT_IDX 2

#define OUT_PARAM(S) ssGetSFcnParam(S,OUT_IDX) /* Third parameter */

7-2

Dialog Parameters

3 In the mdlInitializeSizes function, use the ssSetNumSFcnParams macro
to tell Simulink how many parameters the S-function accepts. Specify
S as the first argument and the number of parameters you are defining
interactively as the second argument. If your S-function implements the
mdlCheckParameters method, the mdlInitializeSizes routine should
call mdlCheckParameters to check the validity of the initial values of
the parameters. For example, the mdlInitializeSizes function in
sfun_runtime1.c begins with the following code.

ssSetNumSFcnParams(S, NPARAMS); /* Number of expected parameters */

#if defined(MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

mdlCheckParameters(S);

if (ssGetErrorStatus(S) != NULL) {

return;

}

} else {

return; /* Parameter mismatch will be reported by Simulink */

}

#endif

When running a simulation, the user must specify the parameters in the
S-Function parameters field of the block’s dialog box in the same order that
you defined them in step 1. The user can enter any valid MATLAB expression
as the value of a parameter, including literal values, names of workspace
variables, function invocations, or arithmetic expressions. Simulink evaluates
the expression and passes its value to the S-function.

Note You cannot use the Model Explorer, the S-Function block dialog box,
or a mask to tune the parameters of a source S-function, i.e., an S-function
that has outputs but no inputs, while a simulation is running. See “Changing
Source Block Parameters During Simulation” for more information.

As another example, the following code is part of a device driver S-function.
Four input parameters are used: BASE_ADDRESS_PRM, GAIN_RANGE_PRM,
PROG_GAIN_PRM, and NUM_OF_CHANNELS_PRM. The code uses #define
statements at the top of the S-function to associate particular input arguments
with the parameter names.

7-3

7 Implementing Block Features

/* Input Parameters */
#define BASE_ADDRESS_PRM(S) ssGetSFcnParam(S, 0)
#define GAIN_RANGE_PRM(S) ssGetSFcnParam(S, 1)
#define PROG_GAIN_PRM(S) ssGetSFcnParam(S, 2)
#define NUM_OF_CHANNELS_PRM(S) ssGetSFcnParam(S, 3)

When running the simulation, a user enters four variable names or values
in the S-Function parameters field of the block’s dialog box. The first
corresponds to the first expected parameter, BASE_ADDRESS_PRM(S). The
second corresponds to the next expected parameter, and so on.

The mdlInitializeSizes function contains this statement.

ssSetNumSFcnParams(S, 4);

Tunable Parameters
Dialog parameters can be either tunable or nontunable. A tunable parameter
is a parameter that a user can change while the simulation is running. Use
the macro ssSetSFcnParamTunable in mdlInitializeSizes to specify the
tunability of each dialog parameter used by the macro.

Note Dialog box parameters are tunable by default. Nevertheless, it is good
programming practice to set the tunability of every parameter, even those
that are tunable. If the user enables the simulation diagnostic S-function
upgrade needed, Simulink issues the diagnostic whenever it encounters an
S-function that fails to specify the tunability of all its parameters.

The mdlCheckParameters method enables you to validate changes to
tunable parameters during a simulation run. Simulink invokes the
mdlCheckParameters method whenever a user changes the values of
parameters during the simulation loop. This method should check the
S-function’s dialog parameters to ensure that the changes are valid.

Note The S-function’s mdlInitializeSizes routine should also invoke
the mdlCheckParameters method to ensure that the initial values of the
parameters are valid.

7-4

Dialog Parameters

The example code below is taken from the mdlInitializeSizes function
found in the example matlabroot/simulink/src/sfun_runtime1.c. The
code first sets the number of S-function dialog box parameters to three before
invoking mdlCheckParameters. If the parameter check passes, the tunability
of the three S-function dialog box parameters is specified.

ssSetNumSFcnParams(S, 3); /* Three dialog box parameters*/

#if defined(MATLAB_MEX_FILE)
if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

mdlCheckParameters(S);
if (ssGetErrorStatus(S) != NULL) {

return;
}

} else {
return; /* Parameter mismatch will be reported by Simulink */

}
#endif

ssSetSFcnParamTunable(S,GAIN_IDX,true); /* Tunable */
ssSetSFcnParamTunable(S,SIGNS_IDX,false); /* Not tunable */
ssSetSFcnParamTunable(S,OUT_IDX,false); /* Not tunable */

The optional mdlProcessParameters callback method allows an S-function
to process changes to tunable parameters. Simulink invokes this method
only if valid parameter changes have occurred in the previous time step.
A typical use of this method is to perform computations that depend only
on the values of parameters and hence need to be computed only when
parameter values change. The method can cache the results of the parameter
computations in work vectors or, preferably, as run-time parameters (see
“Run-Time Parameters” on page 7-7).

Tuning Parameters in External Mode
When a user tunes parameters during simulation, Simulink invokes the
S-function’s mdlCheckParameters method to validate the changes and then
the S-functions’ mdlProcessParameters method to give the S-function a
chance to process the parameters in some way. Simulink also invokes these
methods when running in external mode, but it passes the unprocessed
changes on to the S-function target. Thus, if it is essential that your S-function
process parameter changes, you need to create a Target Language Compiler

7-5

7 Implementing Block Features

(TLC) file that inlines the S-function, including its parameter processing code,
during the code generation process. For information on inlining S-functions,
see “Inlining S-Functions” in the Target Language Compiler Reference Guide.

7-6

Run-Time Parameters

Run-Time Parameters
Simulink allows an S-function to create internal representations of external
dialog parameters called run-time parameters. Every run-time parameter
corresponds to one or more dialog parameters and can have the same value
and data type as its corresponding external parameters or a different value
or data type. If a run-time parameter differs in value or data type from its
external counterpart, the dialog parameter is said to have been transformed
to create the run-time parameter. The value of a run-time parameter that
corresponds to multiple dialog parameters is typically a function of the values
of the dialog parameters. Simulink allocates and frees storage for run-time
parameters and provides functions for updating and accessing them, thus
eliminating the need for S-functions to perform these tasks.

Run-time parameters facilitate the following kinds of S-function operations:

• Computed parameters

Often the output of a block is a function of the values of several dialog
parameters. For example, suppose a block has two parameters, the volume
and density of some object, and the output of the block is a function of
the input signal and the weight of the object. In this case, the weight can
be viewed as a third internal parameter computed from the two external
parameters, volume and density. An S-function can create a run-time
parameter corresponding to the computed weight, thereby eliminating the
need to provide special case handling for weight in the output computation.

• Data type conversions

Often a block needs to change the data type of a dialog parameter to
facilitate internal processing. For example, suppose that the output of
the block is a function of the input and a parameter and the input and
parameter are of different data types. In this case, the S-function can create
a run-time parameter that has the same value as the dialog parameter
but has the data type of the input signal, and use the run-time parameter
in the computation of the output.

• Code generation

During code generation, Real-Time Workshop writes all run-time
parameters automatically to the model.rtw file, eliminating the need for
the S-function to perform this task via an mdlRTW method.

7-7

7 Implementing Block Features

The following Simulink model contains three example S-functions that create
run-time parameters:

matlabroot/toolbox/simulink/simdemos/simfeatures/sfcndemo_runtime.mdl

Creating Run-Time Parameters
An S-function can create run-time parameters all at once or one by one.

Creating Run-Time Parameters All at Once
Use the SimStruct function ssRegAllTunableParamsAsRunTimeParams in
mdlSetWorkWidths to create run-time parameters corresponding to all tunable
parameters. This function requires that you pass it an array of names, one for
each run-time parameter. Real-Time Workshop uses this name as the name of
the parameter during code generation.

Note The first four characters of the names of a block’s run-time parameters
must be unique. If they are not, Simulink signals an error. For example, trying
to register a parameter named param2 triggers an error if a parameter named
param1 already exists. This restriction allows Real-time Workshop to generate
variable names that are unique within a pre-specified number of characters.

This approach to creating run-time parameters assumes that there is a
one-to-one correspondence between an S-function’s run-time parameters and
its tunable dialog parameters. This might not be the case. For example,
an S-function might want to use a computed parameter whose value is
a function of several dialog parameters. In such cases, the S-function
might need to create the run-time parameters individually. The S-function
matlabroot/simulink/src/sfun_runtime1.c shows how to create run-time
parameters all at once.

Creating Run-Time Parameters Individually
To create run-time parameters individually, the S-function’s mdlSetWorkWidths
method should

7-8

Run-Time Parameters

1 Specify the number of run-time parameters it intends to use, using
ssSetNumRunTimeParams.

2 Use ssRegDlgParamAsRunTimeParam to register a run-time parameter
that corresponds to a single dialog parameter, even if there is a data type
transformation, or ssSetRunTimeParamInfo to set the attributes of a
run-time parameter that corresponds to more than one dialog parameter.

The following example uses ssRegDlgParamAsRunTimeParam and is taken
from the S-function matlabroot/simulink/src/sfun_runtime3.c. This
example creates a run-time parameter directly from the dialog parameter and
with the same data type as the first input port’s signal.

static void mdlSetWorkWidths(SimStruct *S)
{

/* Get data type of input to use for run-time parameter */
DTypeId dtId = ssGetInputPortDataType(S, 0);

/* Define name of run-time parameter */
const char_T *rtParamName = "Gain";

ssSetNumRunTimeParams(S, 1); /* One run-time parameter */
if (ssGetErrorStatus(S) != NULL) return;
ssRegDlgParamAsRunTimeParam(S, GAIN_IDX, 0, rtParamName, dtId);

}
#endif /* MDL_SET_WORK_WIDTHS */

The next example uses ssSetRunTimeParamInfo and is taken from the
S-function matlabroot/simulink/src/sfun_runtime2.c.

static void mdlSetWorkWidths(SimStruct *S)
{

ssParamRec p; */ Initialize an ssParamRec structure */
int dlgP = GAIN_IDX; */ Index of S-function parameter */

*/ Configure run-time parameter information */
p.name = "Gain";
p.nDimensions = 2;
p.dimensions = (int_T *) mxGetDimensions(GAIN_PARAM(S));
p.dataTypeId = SS_DOUBLE;
p.complexSignal = COMPLEX_NO;

7-9

7 Implementing Block Features

p.data = (void *)mxGetPr(GAIN_PARAM(S));
p.dataAttributes = NULL;
p.nDlgParamIndices = 1;
p.dlgParamIndices = &dlgP
p.transformed = false;
p.outputAsMatrix = false;

*/ Set number of run-time parameters
if (!ssSetNumRunTimeParams(S, 1)) return;

*/ Set run-time parameter information */
if (!ssSetRunTimeParamInfo(S, 0, &p)) return;

}

Updating Run-Time Parameters
Whenever a user changes the values of an S-function’s dialog
parameters during a simulation run, Simulink invokes the S-function’s
mdlCheckParameters method to validate the changes. If the changes are valid,
Simulink invokes the S-function’s mdlProcessParameters method at the
beginning of the next time step. This method should update the S-function’s
run-time parameters to reflect the changes in the dialog parameters.

Updating All Parameters at Once
If there is a one-to-one correspondence between the S-function’s tunable dialog
parameters and the run-time parameters, i.e., the run-time parameters were
registered using ssRegAllTunableParamsAsRunTimeParams, the S-function
can use the SimStruct function ssUpdateAllTunableParamsAsRunTimeParams
to accomplish this task. This function updates each run-time parameter
to have the same value as the corresponding dialog parameter. See
matlabroot/simulink/src/sfun_runtime1.c for an example.

Updating Parameters Individually
If there is not a one-to-one correspondence between the S-function’s dialog and
run-time parameters or the run-time parameters are transformed versions of
the dialog parameters, the mdlProcessParameters method must update each
parameter individually. The method used to update the run-time parameter
is chosen based on how it was registered.

7-10

Run-Time Parameters

If a run-time parameter was registered using ssSetRunTimeParamInfo,
the mdlProcessParameters method can use ssUpdateRunTimeParamData
to update the run-time parameter, as is shown in
matlabroot/simulink/src/sfun_runtime2.c. This function updates
the data field in the parameter’s attributes record, ssParamRec, with a
new value. Note that Simulink does not allow you to directly modify the
ssParamRec, even though you can obtain a pointer to the ssParamRec using
ssGetRunTimeParamInfo.

If the run-time parameter was registered using
ssRegDlgParamAsRunTimeParam, the mdlProcessParameters
method can use ssUpdateDlgParamAsRunTimeParam to update the run-time
parameter, as is shown in matlabroot/simulink/src/sfun_runtime3.c.

Tuning Runtime Parameters
Tuning a dialog parameter tunes the corresponding runtime parameter
during simulation and in code generated from the model only if the dialog
parameter meets the following conditions:

• The S-function marks the dialog parameter tunable, using
ssSetSFcnParamTunable.

• The dialog parameter is a MATLAB array of values of the standard data
types supported by Simulink.

Note that you cannot tune a runtime parameter whose value is a cell array
or structure.

7-11

7 Implementing Block Features

Creating Input and Output Ports
Simulink allows S-functions to create and use any number of block I/O ports.
This section shows how to create and initialize I/O ports and how to change
the characteristics of an S-function block’s ports, such as dimensionality and
data type, based on its connections to other blocks.

Creating Input Ports
To create and configure input ports, the mdlInitializeSizes method
should first specify the number of input ports that the S-function has, using
ssSetNumInputPorts. Then, for each input port, the method should specify

• The dimensions of the input port (see “Initializing Input Port Dimensions”
on page 7-13)

If you want your S-function to inherit its dimensionality from the port
to which it is connected, you should specify that the port is dynamically
sized in mdlInitializeSizes (see “Sizing an Input Port Dynamically” on
page 7-13).

• Whether the input port allows scalar expansion of inputs (see “Scalar
Expansion of Inputs” on page 7-15)

• Whether the input port has direct feedthrough, using
ssSetInputPortDirectFeedThrough

A port has direct feedthrough if the input is used in either the
mdlGetTimeOfNextVarHit functions. The direct feedthrough flag for each
input port can be set to either 1=yes or 0=no. It should be set to 1 if the
input, u, is used in the mdlOutputs or mdlGetTimeOfNextVarHit routine.
Setting the direct feedthrough flag to 0 tells Simulink that u is not used in
either of these S-function routines. Violating this leads to unpredictable
results.

• The data type of the input port, if not the default double

Use ssSetInputPortDataType to set the input port’s data type. If you want
the data type of the port to depend on the data type of the port to which
it is connected, specify the data type as DYNAMICALLY_TYPED. In this case,
you must provide implementations of the mdlSetInputPortDataType and
mdlSetDefaultPortDataTypes methods to enable the data type to be set
correctly during signal propagation.

7-12

Creating Input and Output Ports

• The numeric type of the input port, if the port accepts complex-valued
signals

Use ssSetInputComplexSignal to set the input port’s numeric type. If you
want the numeric type of the port to depend on the numeric type of the port
to which it is connected, specify the data type as inherited. In this case,
you must provide implementations of the mdlSetInputPortComplexSignal
and mdlSetDefaultPortComplexSignal methods to enable the numeric
type to be set correctly during signal propagation.

Note The mdlInitializeSizes method must specify the number of ports
before setting any properties. If it attempts to set a property of a port that
doesn’t exist, it is accessing invalid memory and Simulink crashes.

Initializing Input Port Dimensions
The following options exist for setting the input port dimensions:

• If the input signal is one-dimensional and the input port width is w, use

ssSetInputPortVectorDimension(S, inputPortIdx, w)

• If the input signal is a matrix of dimension m-by-n, use

ssSetInputPortMatrixDimensions(S, inputPortIdx, m, n)

• Otherwise use

ssSetInputPortDimensionInfo(S, inputPortIdx, dimsInfo)

You can use this function to fully or partially initialize the port dimensions
(see next section).

Sizing an Input Port Dynamically
If your S-function does not require that an input signal have a specific
dimensionality, you might want to set the dimensionality of the input port to
match the dimensionality of the signal connected to the port. To dimension
an input port dynamically, your S-function should

7-13

7 Implementing Block Features

• Specify some or all of the dimensions of the input port as dynamically sized
in mdlInitializeSizes.

If the input port can accept a signal of any dimensionality, use

ssSetInputPortDimensionInfo(S, inputPortIdx, DYNAMIC_DIMENSION)

to set the dimensionality of the input port.

If the input port can accept only vector (1-D) signals but the signals can be
of any size, use

ssSetInputPortWidth(S, inputPortIdx, DYNAMICALLY_SIZED)

to specify the dimensionality of the input port.

If the input port can accept only matrix signals but can accept any row or
column size, use

ssSetInputPortMatrixDimensions(S, inputPortIdx, m, n)

where m and/or n are DYNAMICALLY_SIZED.

• Provide an mdlSetInputPortDimensionInfo method that sets the
dimensions of the input port to the size of the signal connected to it.

Simulink invokes this method during signal propagation when it has
determined the dimensionality of the signal connected to the input port.

• Provide an mdlSetDefaultPortDimensionInfo method that sets the
dimensions of the block’s ports to a default value.

Simulink invokes this method during signal propagation when it cannot
determine the dimensionality of the signal connected to some or all of
the block’s input ports. This can happen, for example, if an input port is
unconnected. If the S-function does not provide this method, Simulink sets
the dimension of the block’s ports to 1-D scalar.

Creating Output Ports
To create and configure output ports, the mdlInitializeSizes method
should first specify the number of output ports that the S-function has, using
ssSetNumOutputPorts. Then, for each output port, the method should specify

7-14

Creating Input and Output Ports

• Dimensions of the output port

Simulink provides the following macros for setting the port’s dimensions.

- ssSetOutputPortDimensionInfo

- ssSetOutputPortMatrixDimensions

- ssSetOutputPortVectorDimensions

- ssSetOutputWidth

If you want the port’s dimensions to depend on block connectivity, set the
dimensions to DYNAMICALLY_SIZED. The S-function must then provide
mdlSetOutputPortDimensionInfo and ssSetDefaultPortDimensionInfo
methods to ensure that output port dimensions are set to the correct values
in code generation.

• Data type of the output port

Use ssSetOutputPortDataType to set the output port’s data type. If
you want the data type of the port to depend on block connectivity,
specify the data type as DYNAMICALLY_TYPED. In this case, you must
provide implementations of the mdlSetOutputPortDataType and
mdlSetDefaultPortDataTypes methods to enable the data type to be set
correctly during signal propagation.

• The numeric type of the input port, if the port outputs complex-valued
signals

Use ssSetOutputComplexSignal to set the output port’s numeric
type. If you want the numeric type of the port to depend on
the numeric type of the port to which it is connected, specify
the data type as inherited. In this case, you must provide
implementations of the mdlSetOutputPortComplexSignal and
mdlSetDefaultPortComplexSignal methods to enable the numeric type to
be set correctly during signal propagation.

Scalar Expansion of Inputs
Scalar expansion of inputs refers conceptually to the process of expanding
scalar input signals to have the same dimensions as the ports to which
they are connected. This is done by setting each element of the expanded
signal to the value of the scalar input. An S-function’s mdlInitializeSizes

7-15

7 Implementing Block Features

method can enable scalar expansion of inputs for its input ports by setting the
SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION option, using ssSetOptions.

The best way to understand the scalar expansion rules is to consider a Sum
block with two input ports, where the first input signal is scalar, the second
input signal is a 1-D vector with w > 1 elements, and the output signal is a
1-D vector with w elements. In this case, the scalar input is expanded to a
1-D vector with w elements in the output method, and each element of the
expanded signal is set to the value of the scalar input.

Outputs
<snip>
u1inc = (u1width > 1);
u2inc = (u2width > 1);
for (i=0;i<w;i++) {
y[i] = *u1 + *u2;
u1 += u1inc;
u2 += u2inc;

}

If the block has more than two inputs, each input signal must be scalar, or the
wide signals must have the same number of elements. In addition, if the wide
inputs are driven by 1-D and 2-D vectors, the output is a 2-D vector signal,
and the scalar inputs are expanded to a 2-D vector signal.

The way scalar expansion actually works depends on whether the
S-function manages the dimensions of its input and output ports
using mdlSetInputPortWidth and mdlSetOutputPortWidth or
mdlSetInputPortDimensionInfo, mdlSetOutputPortDimensionInfo, and
mdlSetDefaultPortDimensionInfo.

If the S-function does not specify/control the dimensions of its input and
output ports using the preceding methods, Simulink uses a default method to
set the input and output ports.

In the mdlInitializeSizes method, the S-function can
enable scalar expansion for its input ports by setting the
SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION option, using ssSetOptions.
The Simulink default method uses the preceding option to allow or disallow
scalar expansion for a block’s input ports. If the preceding option is not set

7-16

Creating Input and Output Ports

by an S-function, Simulink assumes that all ports (input and output ports)
must have the same dimensions, and it sets all port dimensions to the same
dimensions specified by one of the driving blocks.

If the S-function specifies/controls the dimensions of its input and output
ports, Simulink ignores the SCALAR_EXPANSION option.

See matlabroot/simulink/src/sfun_multiport.c for an example.

Masked Multiport S-Functions
If you are developing masked multiport S-function blocks whose number of
ports varies based on some parameter, and if you want to place them in a
Simulink library, you must specify that the mask modifies the appearance of
the block. To do this, execute the command

set_param('block','MaskSelfModifiable','on')

at the MATLAB prompt before saving the library. Failure to specify that the
mask modifies the appearance of the block means that an instance of the
block in a model reverts to the number of ports in the library whenever you
load the model or update the library link.

7-17

7 Implementing Block Features

Custom Data Types
An S-function can accept and output user-defined as well as built-in
Simulink data types. To use a user-defined data type, the S-function’s
mdlInitializeSizes routine must

1 Register the data type, using ssRegisterDataType.

2 Specify the amount of memory in bytes required to store an instance of the
data type, using ssSetDataTypeSize.

3 Specify the value that represents zero for the data type, using
ssSetDataTypeZero.

The following code placed at the beginning of mdlInitializeSizes sets the
size and zero representation of a custom data type named myDataType.

/* Define variables
int_T status;
DTypeId id;

/* Define the structure of the user-defined data type */
typedef struct{

int8_T a;
uint16_T b;

}myStruct;

myStruct tmp;

/* Register the user-defined data types */
id = ssRegisterDataType(S, "myDataType");
if(id == INVALID_DTYPE_ID) return;

/* Set the size of the user-defined data type */
status = ssSetDataTypeSize(S, id, sizeof(tmp));
if(status == 0) return;

/* Set the zero representation */
tmp.a = 0;
tmp.b = 1;

7-18

Custom Data Types

status = ssSetDataTypeZero(S, id, &tmp);

Note If a signal with an aliased data type is passed to the S-function and
the S-function creates a data type ID for it using ssRegisterDataType, the
S-function should not set the size or zero representation for that data type.
See Simulink.AliasType for a discussion on aliased data types.

7-19

7 Implementing Block Features

Sample Times
This section explains how to specify the sample-time behavior of your function,
e.g., whether it inherits its rates from the blocks that drive it or defines its
own rates and, if it defines its own rates, what the rates are.

An S-function block can specify its rates (i.e., sample times) as

• Block-based sample times

• Port-based sample times

• Hybrid block-based and port-based sample times

With block-based sample times, the S-function specifies a set of operating
rates for the block as a whole during the initialization phase of the simulation.
With port-based sample times, the S-function specifies a sample time for each
input and output port individually during initialization. During the execution
phase, with block-based sample times, the S-function processes all inputs
and outputs each time a sample hit occurs for the block. By contrast, with
port-based sample times, the block processes a particular port only when a
sample hit occurs for that port.

For example, consider two sample rates, 0.5 and 0.25 seconds, respectively:

• In the block-based method, selecting 0.5 and 0.25 would direct the block to
execute inputs and outputs at 0.25 second increments.

• In the port-based method, you could set the input port to 0.5 and the output
port to 0.25, and the block would process inputs at 2Hz and outputs at 4Hz.

You should use port-based sample times if your application requires unequal
sample rates for input and output execution or if you don’t want the overhead
associated with running input and output ports at the highest sample rate
of your block.

In some applications, an S-Function block might need to operate internally
at one or more sample rates while inputting or outputting signals at other
rates. The hybrid block- and port-based method of specifying sample rates
allows you to create such blocks.

7-20

Sample Times

In typical applications, you specify only one block-based sample time.
Advanced S-functions might require the specification of port-based or multiple
block sample times.

Block-Based Sample Times
The next two sections discuss how to specify block-based sample times. You
must specify information in

• mdlInitializeSizes

• mdlInitializeSampleTimes

A third section presents a simple example that shows how to specify
sample times in mdlInitializeSampleTimes. For a detailed example, see
matlabroot/simulink/src/mixedm.c.

Specifying the Number of Sample Times in mdlInitializeSizes
To configure your S-function block for block-based sample times, use

ssSetNumSampleTimes(S,numSampleTimes);

where numSampleTimes > 0. This tells Simulink that your S-function has
block-based sample times. Simulink calls mdlInitializeSampleTimes, which
in turn sets the sample times.

Setting Sample Times and Specifying Function Calls in
mdlInitializeSampleTimes
mdlInitializeSampleTimes is used to specify two pieces of execution
information:

• Sample and offset times — In mdlInitializeSampleTimes, you must
specify the sampling period and offset for each sample time using
ssSetSampleTime and ssSetOffsetTime. If applicable, you can calculate
the appropriate sampling period and offset prior to setting them, for
example, by computing the best sample time for the block based on the
S-function’s dialog parameters obtained using ssGetSFcnParam.

7-21

7 Implementing Block Features

• Function calls — In mdlInitializeSampleTimes, use
ssSetCallSystemOutput to specify the output elements that are performing
function calls. See matlabroot/simulink/src/sfun_fcncall.c for an
example and “Function-Call Subsystems” on page 7-44 for an explanation
of this S-function.

You specify the sample times as pairs [sample_time, offset_time], using
these macros

ssSetSampleTime(S, sampleTimePairIndex, sample_time)
ssSetOffsetTime(S, offsetTimePairIndex, offset_time)

where sampleTimePairIndex starts at 0.

The valid sample time pairs are (uppercase values are macros defined in
simstruc.h):

[CONTINUOUS_SAMPLE_TIME, 0.0]
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
[discrete_sample_period, offset]
[VARIABLE_SAMPLE_TIME , 0.0]

Alternatively, you can specify that the sample time is inherited from the
driving block, in which case the S-function can have only one sample time pair,

[INHERITED_SAMPLE_TIME, 0.0]

or

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

Note If your S-function inherits its sample time, you should specify whether
it is safe to use the S-function in a submodel, i.e., a model referenced by
another model. See “Specifying Model Reference Sample Time Inheritance”
on page 7-33 for more information.

The following guidelines might help in specifying sample times:

7-22

Sample Times

• A continuous function that changes during minor integration steps should
register the [CONTINUOUS_SAMPLE_TIME, 0.0] sample time.

• A continuous function that does not change during minor
integration steps should register the [CONTINUOUS_SAMPLE_TIME,
FIXED_IN_MINOR_STEP_OFFSET] sample time.

• A discrete function that changes at a specified rate should register the
discrete sample time pair

[discrete_sample_period, offset]

where

discrete_sample_period > 0.0

and

0.0 <= offset < discrete_sample_period

• A discrete function that changes at a variable rate should register the
variable-step discrete [VARIABLE_SAMPLE_TIME, 0.0] sample time. The
mdlGetTimeOfNextVarHit function is called to get the time of the next
sample hit for the variable-step discrete task. The VARIABLE_SAMPLE_TIME
can be used with variable-step solvers only.

If your function has no intrinsic sample time, you must indicate that it is
inherited according to the following guidelines:

• A function that changes as its input changes, even during minor integration
steps, should register the [INHERITED_SAMPLE_TIME, 0.0] sample time.

• A function that changes as its input changes, but doesn’t change during
minor integration steps (that is, is held during minor steps), should register
the [INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET] sample
time.

To check for a sample hit during execution (in mdlOutputs or mdlUpdate), use
the ssIsSampleHit or ssIsContinuousTask macro. For example, if your
first sample time is continuous, then you use the following code fragment

7-23

7 Implementing Block Features

to check for a sample hit. Note that you get incorrect results if you use
ssIsSampleHit(S,0,tid).

if (ssIsContinuousTask(S,tid)) {
}

If, for example, you wanted to determine whether the third (discrete) task has
a hit, you would use the following code fragment:

if (ssIsSampleHit(S,2,tid) {
}

Example: mdlInitializeSampleTimes
This example specifies that there are two discrete sample times with periods
of 0.01 and 0.5 seconds.

static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, 0.01);
ssSetOffsetTime(S, 0, 0.0);
ssSetSampleTime(S, 1, 0.5);
ssSetOffsetTime(S, 1, 0.0);

} /* End of mdlInitializeSampleTimes. */

Specifying Port-Based Sample Times
If you want your S-function to use port-based sample times, you must
specify the number of sample times as port-based in the S-function’s
mdlInitializeSizes method:

ssSetNumSampleTimes(S, PORT_BASED_SAMPLE_TIMES)

You must also specify the sample time of each input and output port in the
S-function’s mdlInitializeSizes method, using the following macros

ssSetInputPortSampleTime(S, idx, period)
ssSetInputPortOffsetTime(S, idx, offset)
ssSetOutputPortSampleTime(S, idx, period)
ssSetOutputPortOffsetTime(S, idx, offset)

7-24

Sample Times

Note mdlInitializeSizes should not contain any ssSetSampleTime or
ssSetOffsetTime calls when you use port-based sample times.

The call to ssSetNumSampleTimes can be placed before or after the port-based
sample times are actually specified in mdlInitializeSizes. However, if
ssSetNumSampleTimes does not configure the S-function to use port-based
sample times, any sample times set on the ports will be ignored.

For any given port, you can specify

• A specific sample time and period

For example, the following code sets the sample time of the S-function’s
first input port to every 0.1 s starting with the simulation start time.

ssSetInputPortSampleTime(S, 0, 0.1);
ssSetInputPortOffsetTime(S, 0, 0);

• Inherited sample time, i.e., the port inherits its sample time from the
port to which it is connected (see “Specifying Inherited Sample Time for
a Port” on page 7-26)

• Constant sample time, i.e., the port’s input or output never changes (see
“Specifying Constant Sample Time for a Port” on page 7-26)

Note To be usable in a triggered subsystem, all of your S-function’s ports
must have either inherited or constant sample time (see “Configuring
Port-Based Sample Times for Use in Triggered Subsystems” on page 7-28).

Port-based sample times cannot be used with S-functions that have neither
input ports nor output ports. If an S-function uses port-based sample times
and has no ports, the S-function produces errors when the Simulink model
is updated or run. If the number of input or output ports on an S-function is
variable, extra protection should be added into the S-function to ensure the
total number of ports does not go to zero.

7-25

7 Implementing Block Features

Specifying Inherited Sample Time for a Port
To specify that a port’s sample time is inherited, the mdlInitializeSizes
method should set its period to -1 and its offset to 0. For example, the following
code specifies inherited sample time for the S-function’s first input port:

ssSetInputPortSampleTime(S, 0, -1);
ssSetInputPortOffsetTime(S, 0, 0);

When you specify port-based sample times, Simulink calls
mdlSetInputPortSampleTime and mdlSetOutputPortSampleTime to
determine the rates of inherited signals.

Once all rates have been determined, Simulink calls
mdlInitializeSampleTimes. Even though there is no need to initialize
port-based sample times at this point, Simulink invokes this method to give
your S-function an opportunity to configure function-call connections. Your
S-function must thus provide an implementation for this method regardless
of whether it uses port-based sample times or function-call connections.
Although you can provide an empty implementation, you might want to
use it to check the appropriateness of the sample times that the block
inherited during sample time propagation. Use ssGetInputPortSampleTime
and ssGetOutputPortSampleTime in mdlInitializeSampleTimes to obtain
the values of the inherited sample times. For example, the following code in
mdlInitializeSampleTimes checks if the S-function’s first input inherited a
continuous sample time.

if (!ssGetInputPortSampleTime(S,0) {
ssSetErrorStatus(S,"Cannot inherit a continuous sample time.");

}

Note If you specify that your S-function’s ports inherit their sample time, you
should also specify whether it is safe to use the S-function in a submodel,
i.e., a model referenced by another model. See “Specifying Model Reference
Sample Time Inheritance” on page 7-33 for more information.

Specifying Constant Sample Time for a Port
If your S-function uses port-based sample times, it can specify that any of
its ports has a constant sample time. This means that the signal entering

7-26

Sample Times

or leaving the port never changes from its initial value at the start of the
simulation.

Before specifying constant sample time for an output port whose output
depends on the S-function’s parameters, the S-function should use
ssGetInlineParameters to check whether the user has specified the Inline
parameters option on the Optimization pane of the Configuration
parameters dialog box. If the user has not checked this option, it is possible
for the user to change the values the S-function’s parameters and hence
its outputs during the simulation. In this case, the S-function should not
specify a constant sample time for any ports whose outputs depend on the
S-function’s parameters.

To specify constant sample time for a port, the S-function must perform the
following tasks

• Use ssSetOptions to tell Simulink that it supports constant port sample
times in its mdlInitializeSizes method:

ssSetOptions(S, SS_OPTION_ALLOW_CONSTANT_PORT_SAMPLE_TIME);

Note By setting this option, your S-function is in effect telling
Simulink that all of its ports support a constant sample time including
ports that inherit their sample times from other blocks. If any of
the S-function’s inherited sample time ports cannot have a constant
sample time, your S-function’s mdlSetInputPortSampleTime and
mdlSetOutputPortSampleTime methods must check whether that port
has inherited a constant sample time. If the port has inherited a constant
sample time, your S-function should throw an error.

• Set the port’s period to inf and its offset to 0, e.g.,

ssSetInputPortSampleTime(S, 0, mxGetInf());
ssSetInputPortOffsetTime(S, 0, 0);

• Check in mdlOutputs whether the method’s tid argument equals
CONSTANT_TID and if so, set the value of the port’s output if it is an output
port.

7-27

7 Implementing Block Features

See sfun_port_constant.c, the source file for the sfcndemo_port_constant
demo, for an example of how to create ports with a constant sample time.

Configuring Port-Based Sample Times for Use in Triggered
Subsystems
To be usable in a triggered subsystem, your port-based sample time S-function
must perform the following tasks.

• Use ssSetOptions to tell Simulink in its mdlInitializeSizes method
that it can run in a triggered subsystem:

ssSetOptions(S,
SS_OPTION_ALLOW_PORT_BASED_SAMPLE_TIME_IN_TRIGSS);

• Set all of its ports to have either inherited or constant sample time in its
mdlInitializeSizes method.

• Handle inheritance of a triggered sample time in
mdlSetInputPortSampleTime and mdlSetOutputPortSampleTime methods
as follows.

Since the S-function’s ports inherit their sample times,
Simulink invokes either mdlSetInputPortSampleTime or
mdlSetOutputPortSampleTime during sample time propagation. The
macro ssSampleAndOffsetAreTriggered can be used in these methods
to determine if the S-function resides in a triggered subsystem. If the
S-function does reside in a triggered subsystem, whichever method is called
must set the sample time and offset of the port for which it is called to
INHERITED_SAMPLE_TIME (-1).

Setting a port’s sample time and offset both to INHERITED_SAMPLE_TIME
indicates that the sample time of the port is triggered, i.e., it produces an
output or accepts an input only when the subsystem in which it resides is
triggered. The method must then also set the sample times and offsets of
all of the S-function’s other input and output ports to have either triggered
or constant sample time, whichever is appropriate, e.g.,

static void mdlSetInputPortSampleTime(SimStruct *S,
int_T portIdx,
real_T sampleTime
real_T offsetTime)

7-28

Sample Times

{
/* If the S-function resides in a triggered subsystem,

the sample time and offset passed to this method
are both equal to INHERITED_SAMPLE_TIME. Therefore,
if triggered, the following lines set the sample time
and offset of the input port to INHERITED_SAMPLE_TIME.*/

ssSetInputPortSampleTime(S, portIdx, sampleTime);
ssSetInputPortOffsetTime(S, portIdx, offsetTime);

/* If triggered, set the output port to inherited, as well */

if (ssSampleAndOffsetAreTriggered(sampleTime,offsetTime)) {
ssSetOutputPortSampleTime(S, 0, INHERITED_SAMPLE_TIME);
ssSetOutputPortOffsetTime(S, 0, INHERITED_SAMPLE_TIME);

/* Note, if there are additional input and output ports
on this S-function, they should be set to either
inherited or constant at this point, as well. */

}
}

There is no way for an S-function residing in a triggered subsystem
to predict whether Simulink will call mdlSetInputPortSampleTime or
mdlSetOutputPortSampleTime to set its port sample times. For this
reason, both methods must be able to set the sample times of all ports
correctly so that one of the methods need only be called once.

• In mdlUpdate and mdlOutputs, use
ssGetPortBasedSampleTimeBlockIsTriggered to check
whether the S-function resides in a triggered subsystem and if so, use
appropriate algorithms for computing its states and outputs.

See sfun_port_triggered.c, the source file for the
sfcndemo_port_triggered demo, for an example of how to create an
S-function that can be used in a triggered subsystem.

7-29

7 Implementing Block Features

Hybrid Block-Based and Port-Based Sample Times
The hybrid method of assigning sample times combines the block-based and
port-based methods. You first specify, in mdlInitializeSizes, the total
number of rates at which your block operates, including both internal and
input and output rates, using ssSetNumSampleTimes.

You then set the SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED, using
ssSetOptions, to tell the simulation engine that you are going to use
the port-based method to specify the rates of the input and output ports
individually. Next, as in the block-based method, you specify the periods and
offsets of all of the block’s rates, both internal and external, using

ssSetSampleTime
ssSetOffsetTime

Finally, as in the port-based method, you specify the rates for each port, using

ssSetInputPortSampleTime(S, idx, period)
ssSetInputPortOffsetTime(S, idx, offset)
ssSetOutputPortSampleTime(S, idx, period)
ssSetOutputPortOffsetTime(S, idx, offset)

Note that each of the assigned port rates must be the same as one of
the previously declared block rates. For an example S-function, see
matlabroot/simulink/src/mixedm.c.

Note If you use the SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED option, your
S-function cannot inherit sample times. Instead, you must specify the rate at
which each input and output port runs.

Multirate S-Function Blocks
In a multirate S-Function block, you can encapsulate the code that defines
each behavior in the mdlOutputs and mdlUpdate functions with a statement
that determines whether a sample hit has occurred. The ssIsSampleHit
macro determines whether the current time is a sample hit for a specified
sample time. The macro has this syntax:

ssIsSampleHit(S, st_index, tid)

7-30

Sample Times

where S is the SimStruct, st_index identifies a specific sample time index,
and tid is the task ID (tid is an argument to the mdlOutputs and mdlUpdate
functions).

For example, these statements specify three sample times: one for continuous
behavior and two for discrete behavior.

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetSampleTime(S, 1, 0.75);
ssSetSampleTime(S, 2, 1.0);

In the mdlUpdate function, the following statement encapsulates the code that
defines the behavior for the sample time of 0.75 second.

if (ssIsSampleHit(S, 1, tid)) {
}

The second argument, 1, corresponds to the second sample time, 0.75 second.

Example of Defining a Sample Time for a Continuous Block
This example defines a sample time for a block that is continuous.

/* Initialize the sample time and offset. */
static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

}

You must add this statement to the mdlInitializeSizes function.

ssSetNumSampleTimes(S, 1);

7-31

7 Implementing Block Features

Example of Defining a Sample Time for a Hybrid Block
This example defines sample times for a hybrid S-Function block.

/* Initialize the sample time and offset. */
static void mdlInitializeSampleTimes(SimStruct *S)
{

/* Continuous state sample time and offset. */
ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

/* Discrete state sample time and offset. */
ssSetSampleTime(S, 1, 0.1);
ssSetOffsetTime(S, 1, 0.025);

}

In the second sample time, the offset causes Simulink to call the mdlUpdate
function at these times: 0.025 second, 0.125 second, 0.225 second, and so on,
in increments of 0.1 second.

The following statement, which indicates how many sample times are defined,
also appears in the mdlInitializeSizes function.

ssSetNumSampleTimes(S, 2);

Synchronizing Multirate S-Function Blocks
If tasks running at different rates need to share data, you must ensure that
data generated by one task is valid when accessed by another task running
at a different rate. You can use the ssIsSpecialSampleHit macro in the
mdlUpdate or mdlOutputs routine of a multirate S-function to ensure that the
shared data is valid. This macro returns true if a sample hit has occurred at
one rate and a sample hit has also occurred at another rate in the same time
step. It thus permits a higher rate task to provide data needed by a slower
rate task at a rate the slower task can accommodate.

Suppose, for example, that your model has an input port operating at one rate,
0, and an output port operating at a slower rate, 1. Further, suppose that you
want the output port to output the value currently on the input. The following
example illustrates usage of this macro.

if (ssISampleHit(S, 0, tid) {

7-32

Sample Times

if (ssIsSpecialSampleHit(S, 0, 1, tid) {
/* Transfer input to output memory. */
...

}
}

if (ssIsSampleHit(S, 1, tid) {
/* Emit output. */
...

}

In this example, the first block runs when a sample hit occurs at the input
rate. If the hit also occurs at the output rate, the block transfers the input to
the output memory. The second block runs when a sample hit occurs at the
output rate. It transfers the output in its memory area to the block’s output.

Note that higher-rate tasks always run before slower-rate tasks. Thus, the
input task in the preceding example always runs before the output task,
ensuring that valid data is always present at the output port.

Specifying Model Reference Sample Time Inheritance
If your S-function inherits its sample times from the blocks that
drive it, it should specify whether submodels containing your
S-function can inherit sample times from their parent model. If
the S-function’s output does not depend on its inherited sample
time, use the ssSetModelReferenceSampleTimeInheritanceRule
macro to set the S-function’s sample time inheritance rule to
USE_DEFAULT_FOR_DISCRETE_INHERITANCE. Otherwise, set the rule to
DISALLOW_SAMPLE_TIME_INHERITANCE. Specifying the inheritance rule allows
Simulink to disallow sample-time inheritance for submodels that include
S-functions whose outputs depend on their inherited sample time and thereby
avoid inadvertent simulation errors.

7-33

7 Implementing Block Features

Note If your S-function does not set this flag, Simulink assumes that it
does not preclude a submodel containing it from inheriting a sample time.
However, Simulink optionally warns the user that the submodel contains
S-functions that do not specify a sample-time inheritance rule (see “Blocks
That Preclude Sample-Time Inheritance” in the online Simulink help).

If you are uncertain whether an existing S-function’s output depends on its
inherited sample time, check whether it invokes any of the following C macros:

• ssGetSampleTime

• ssGetInputPortSampleTime

• ssGetOutputPortSampleTime

• ssGetInputPortOffsetTime

• ssGetOutputPortOffsetTime

• ssGetSampleTimePtr

• ssGetInputPortSampleTimeIndex

• ssGetOutputPortSampleTimeIndex

• ssGetSampleTimeTaskID

• ssGetSampleTimeTaskIDPtr

or TLC functions:

• LibBlockSampleTime

• CompiledModel.SampleTime

• LibBlockInputSignalSampleTime

• LibBlockInputSignalOffsetTime

• LibBlockOutputSignalSampleTime

• LibBlockOutputSignalOffsetTime

7-34

Sample Times

If the S-function does not invoke any of these macros or functions, its output
does not depend on its inherited sample time and hence it is safe to use in
submodels that inherit their sample time.

Sample-Time Inheritance Rule Example
As an example of an S-function that precludes a submodel from inheriting
its sample time, consider an S-function that has the following mdlOutputs
method:

static void mdlOutputs(SimStruct *S, int_T tid) {
const real_T *u = (const real_T*)
ssGetInputPortSignal(S,0);
real_T *y = ssGetOutputPortSignal(S,0);
y[0] = ssGetSampleTime(S,tid) * u[0];

}

This output of this S-function is its inherited sample time, hence its output
depends on its inherited sample time, and hence it is unsafe to use in a
submodel. For this reason, this S-function should specify its model reference
inheritence rule as follows:

ssSetModelReferenceSampleTimeInheritanceRule
(S, DISALLOW_SAMPLE_TIME_INHERITANCE);

7-35

7 Implementing Block Features

Work Vectors
Work vectors are blocks of memory that an S-function can ask Simulink to
allocate to each instance of the S-function in a model. If multiple instances
of your S-function can occur in a model, your S-function must use work
vectors instead of global or static memory to store instance-specific values of
S-function variables. Otherwise, your S-function runs the risk of one instance
overwriting data needed by another instance, causing a simulation to fail or
produce incorrect results.The ability to keep track of multiple instances of
an S-function is called reentrancy.

You can create an S-function that is reentrant by using work vectors that
Simulink manages for each particular instance of the S-function. Integer,
floating-point (real), pointer, and general data types are supported. The
number of elements in each vector can be specified dynamically as a function
of the number of inputs to the S-function.

Work vectors have several advantages:

• Instance-specific storage for block variables

• Integer, real, pointer, and general data types

• Elimination of static and global variables and the associated multiple
instance problems

For example, suppose you’d like to track the previous value of each input signal
element entering input port 1 of your S-function. Either the discrete-state
vector or the real-work vector could be used for this, depending upon whether
the previous value is considered a discrete state (that is, compare the unit
delay and the memory block). If you do not want the previous value to
be logged when states are saved, use the real-work vector, rwork. To do
this, in mdlInitializeSizes specify the length of this vector by using
ssSetNumRWork. Then in either mdlStart or mdlInitializeConditions,
initialize the rwork vector using ssSetRWorkValue. In mdlOutputs, you can
retrieve the previous inputs by using ssGetRWork. In mdlUpdate, update the
previous value of the rwork vector by using ssGetInputPortRealSignalPtrs.
See matlabroot/simulink/src/sfunmem.c for an example using the rwork
vector.

7-36

Work Vectors

Use the macros in this table to specify the length of the work vectors for each
instance of your S-function in mdlInitializeSizes.

Macros Used in Specifying Vector Widths

Macro Description

ssSetNumContStates Width of the continuous-state vector

ssSetNumDiscStates Width of the discrete-state vector

ssSetNumDWork Width of the data type work vector

ssSetNumRWork Width of the real-work vector

ssSetNumIWork Width of the integer-work vector

ssSetNumPWork Width of the pointer-work vector

ssSetNumModes Width of the mode-work vector

ssSetNumNonsampledZCs Width of the nonsampled zero-crossing
vector

Specify vector widths in mdlInitializeSizes. There are three choices:

• 0 (the default). This indicates that the vector is not used by your S-function.

• A positive nonzero integer. This is the width of the vector that is available
for use by mdlStart, mdlInitializeConditions, and S-function routines
called in the simulation loop.

• The DYNAMICALLY_SIZED define. The default behavior for dynamically
sized vectors is to set them to the overall block width. Simulink does this
after propagating line widths and sample times. The block width is the
width of the signal passing through your block. In general this is equal to
the output port width.

If the default behavior of dynamically sized vectors does not meet your
needs, use mdlSetWorkWidths and the macros listed in Macros Used in
Specifying Vector Widths on page 7-37, to set the sizes of the work vectors
explicitly. mdlSetWorkWidths also allows you to set your work vector lengths
as functions of the block sample time and/or port widths.

7-37

7 Implementing Block Features

The continuous states are used when you have a state that needs to be
integrated by one of the Simulink solvers. When you specify continuous states,
you must return the states’ derivatives in mdlDerivatives. The discrete state
vector is used to maintain state information that changes at fixed intervals.
Typically the discrete state vector is updated in place in mdlUpdate.

The integer, real, and pointer work vectors are storage locations that are
not logged by Simulink during simulations. They maintain persistent data
between calls to your S-function.

Work Vectors and Zero Crossings
The mode-work vector and the nonsampled zero-crossing vector are
typically used with zero crossings. Elements of the mode vector are
integer values. You specify the number of mode-vector elements in
mdlInitializeSizes, using ssSetNumModes(S,num). You can then access
the mode vector using ssGetModeVector. The mode vector is used to
determine how the mdlOutputs routine should operate when the solvers
are homing in on zero crossings. The zero crossings or state events (i.e.,
discontinuities in the first derivatives) of some signal, usually a function
of an input to your S-function, are tracked by the solver by looking at the
nonsampled zero crossings. To register nonsampled zero crossings, set
the number of nonsampled zero crossings in mdlInitializeSizes, using
ssSetNumNonsampledZCs(S, num). Then define the mdlZeroCrossings
routine to return the nonsampled zero crossings. A zero-crossing example can
be found in matlabroot/simulink/src/sfun_zc_sat.c. The relevant pieces
of this S-function are shown below.

First, mdlInitializeSizes specifies the sizes for the mode and nonsampled
zero-crossing vectors using the following lines of code.

ssSetNumModes(S, DYNAMICALLY_SIZED);
ssSetNumNonsampledZCs(S, DYNAMICALLY_SIZED);

Since the number of modes and nonsampled zero crossings is dynamically
sized, mdlSetWorkWidths must initialize the actual size of these vectors. In
this example, shown below, there is one mode vector for each output element
and two nonsampled zero crossings for each mode. In general, the number
of nonsampled zero crossings needed for each mode depends on the number
of events that need to be detected. In this case, each output (mode) needs to

7-38

Work Vectors

detect when it hits the upper or the lower bound, hence two nonsampled
zero crossings per mode.

static void mdlSetWorkWidths(SimStruct *S)
{

int nModes;
int nNonsampledZCs;

nModes = numOutput;
nNonsampledZCs = 2 * numOutput;

ssSetNumModes(S,nModes);
ssSetNumNonsampledZCs(S,nNonsampledZCs);

}

Next, mdlOutputs determines which mode the simulation is running in at
the beginning of each major time step. By storing this information in the
mode vector, it is then available when calculating outputs at both major and
minor time steps.

/* Get the mode vector */

int_T *mode = ssGetModeVector(S);

/* Specify three possible mode values.*/

enum { UpperLimitEquation, NonLimitEquation, LowerLimitEquation };

/* Update the mode vector at the beginning of a major time step */

if (ssIsMajorTimeStep(S)) {

for (iOutput = 0; iOutput < numOutput; iOutput++) {

if (*uPtrs[uIdx] > *upperLimit) {

/* Upper limit is reached. */

mode[iOutput] = UpperLimitEquation;

} else if (*uPtrs[uIdx] < *lowerLimit) {

/* Lower limit is reached. */

mode[iOutput] = LowerLimitEquation;

} else {

/* Output is not limited. */

mode[iOutput] = NonLimitEquation;

}

7-39

7 Implementing Block Features

/* Adjust indices to give scalar expansion. */

uIdx += uInc;

upperLimit += upperLimitInc;

lowerLimit += lowerLimitInc;

}

/* Reset index to input and limits. */

uIdx = 0;

upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

} /* end IsMajorTimeStep */

Output calculations in mdlOutputs are finally done based on the values stored
in the mode vector.

for (iOutput = 0; iOutput < numOutput; iOutput++) {
if (mode[iOutput] == UpperLimitEquation) {

/* Output upper limit. */
*y++ = *upperLimit;

} else if (mode[iOutput] == LowerLimitEquation) {
/* Output lower limit. */
*y++ = *lowerLimit;

} else {
/* Output is equal to input */
*y++ = *uPtrs[uIdx];

}

After outputs are calculated, Simulink calls mdlZeroCrossings to determine
if a zero crossing has occurred. A zero crossing is detected if any element
of the nonsampled zero-crossing vector switches from negative to positive,
or positive to negative. If this occurs, the simulation modifies the step size
and recalculates the outputs to try to locate the exact zero crossing. For this
example, the values for the nonsampled zero-crossing vectors are calculated
as shown below.

static void mdlZeroCrossings(SimStruct *S)

{

7-40

Work Vectors

int_T iOutput;

int_T numOutput = ssGetOutputPortWidth(S,0);

real_T *zcSignals = ssGetNonsampledZCs(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* Set index and increment for the input signal, upper limit, and lower

* limit parameters so that each gives scalar expansion if needed. */

int_T uIdx = 0;

int_T uInc = (ssGetInputPortWidth(S,0) > 1);

const real_T *upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

int_T upperLimitInc = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);

const real_T *lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

int_T lowerLimitInc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);

/*Check if the input has crossed an upper or lower limit */

for (iOutput = 0; iOutput < numOutput; iOutput++) {

zcSignals[2*iOutput] = *uPtrs[uIdx] - *upperLimit;

zcSignals[2*iOutput+1] = *uPtrs[uIdx] - *lowerLimit;

/* Adjust indices to give scalar expansion if needed */

uIdx += uInc;

upperLimit += upperLimitInc;

lowerLimit += lowerLimitInc;

}

}

Example Involving a Pointer Work Vector
This example opens a file and stores the FILE pointer in the pointer-work
vector.

The following statement, included in the mdlInitializeSizes function,
indicates that the pointer-work vector is to contain one element.

ssSetNumPWork(S, 1) /* pointer-work vector */

The following code uses the pointer-work vector to store a FILE pointer,
returned from the standard I/O function fopen.

#define MDL_START /* Change to #undef to remove function. */
#if defined(MDL_START)

7-41

7 Implementing Block Features

static void mdlStart(real_T *x0, SimStruct *S)
{

FILE *fPtr;
void **PWork = ssGetPWork(S);
fPtr = fopen("file.data", "r");
PWork[0] = fPtr;

}
#endif /* MDL_START */

This code retrieves the FILE pointer from the pointer-work vector and passes
it to fclose to close the file.

static void mdlTerminate(SimStruct *S)
{

if (ssGetPWork(S) != NULL) {
FILE *fPtr;
fPtr = (FILE *) ssGetPWorkValue(S,0);
if (fPtr != NULL) {

fclose(fPtr);
}
ssSetPWorkValue(S,0,NULL);

}
}

Note If you are using mdlSetWorkWidths, any work vectors you use in your
S-function should be set to DYNAMICALLY_SIZED in mdlInitializeSizes, even
if the exact value is known before mdlInitializeSizes is called. The size to
be used by the S-function should be specified in mdlSetWorkWidths.

The synopsis is

#define MDL_SET_WORK_WIDTHS /* Change to #undef to remove function. */

#if defined(MDL_SET_WORK_WIDTHS) && defined(MATLAB_MEX_FILE)

static void mdlSetWorkWidths(SimStruct *S)

{

}

#endif /* MDL_SET_WORK_WIDTHS */

7-42

Work Vectors

For an example, see matlabroot/simulink/src/sfun_dynsize.c.

Memory Allocation
When you are creating an S-function, the available work vectors might not
provide enough capability. In this case, you need to allocate memory for each
instance of your S-function. The standard MATLAB API memory allocation
routines mxCalloc and mxFree should not be used with C MEX S-functions,
because these routines are designed to be used with MEX-files that are called
from MATLAB and not Simulink. The correct approach for allocating memory
is to use the stdlib.h library routines calloc and free. In mdlStart,
allocate and initialize the memory

UD *ptr = (UD *)calloc(1,sizeof(UD));

where UD, in this example, is a data structure defined at the beginning of the
S-function. Then, place the pointer to it either in pointer-work vector elements

ssSetPWorkValue(S, 0, ptr);

or attach it as user data.

ssSetUserData(S,ptr);

In mdlTerminate, free the allocated memory. For example, if the pointer was
stored in the user data

UD *prt = ssGetUserData(S);
free(prt);

7-43

7 Implementing Block Features

Function-Call Subsystems
You can create a triggered subsystem whose execution is determined by logic
internal to an S-function instead of by the value of a signal. A subsystem so
configured is called a function-call subsystem. To implement a function-call
subsystem:

• In the Trigger block, select function-call as the Trigger type parameter.

• In the S-function, use the ssEnableSystemWithTid and
ssDisableSystemWithTid to enable or disable the triggered
subsystem and the ssCallSystemWithTid macro to call the triggered
subsystem.

• In the model, connect the S-Function block output directly to the trigger
port.

Note Function-call connections can only be performed on the first output
port.

Function-call subsystems are not executed directly by Simulink; rather, the
S-function determines when to execute the subsystem. When the subsystem
completes execution, control returns to the S-function. This figure illustrates
the interaction between a function-call subsystem and an S-function.

In this figure, ssCallSystemWithTid executes the function-call subsystem
that is connected to the first output port element. ssCallSystemWithTid
returns 0 if an error occurs while executing the function-call subsystem or if
the output is unconnected. After the function-call subsystem executes, control
is returned to your S-function.

7-44

Function-Call Subsystems

Function-call subsystems can only be connected to S-functions that have been
properly configured to accept them.

To configure an S-function to call a function-call subsystem:

• Specify the elements that are to execute the function-call subsystem in
mdlInitializeSampleTimes. For example:

ssSetCallSystemOutput(S,0); /* call on first element */
ssSetCallSystemOutput(S,1); /* call on second element */

• Specify in mdlInitializeSampleTimes whether you want the S-function to
be able to enable or disable the function-call subsystem. Only S-functions
that explicitly enable and disable the function-call subsystem can reset the
states and outputs of the subsystem, as determined by the function-call
subsystem’s Trigger and Outport blocks. For example, the code

ssSetExplicitFCSSCtrl(S, 1);

in mdlInitializeSampleTimes specifies that the S-function can enable
and disable the function-call subsystem. In this case, the S-function must
invoke ssEnableSystemWithTid before executing the subsystem using
ssCallSystemWithTid.

7-45

7 Implementing Block Features

• Execute the subsystem in the appropriate mdlOutputs or mdlUpdate
S-function routine. For example:

static void mdlOutputs(...)
{

if (((int)*uPtrs[0]) % 2 == 1) {
if (!ssCallSystemWithTid(S,0,tid)) {

/* Error occurred, which will be reported by */
/*Simulink*/

return;
}

} else {
if (!ssCallSystemWithTid(S,1,tid)) {

/* Error occurred, which will be reported by */
/*Simulink*/

return;
}

}
...

}

Note Do not use ssSetOutputPortDataType or ssGetOutputPortDataType
on an S-function output that emits function-call signals. Simulink explicitly
controls the data type of these output signals.

See matlabroot/simulink/src/sfun_fcncall.c for an example that executes
a function-call subsystem on the first and second elements of the S-function’s
first output. The following Simulink model implements this S-function.

7-46

Function-Call Subsystems

Each of the function-call subsystems is a simple feedback loop containing a
Unit Delay block, as shown below.

When the Pulse Generator emits its upper value, the function-call subsystem
connected to the first element of the S-function’s first output port is triggered.
Similarly, when the Pulse Generator emits its lower value, the function-call
subsystem connected to the second element is triggered. The simulation
output is shown on the Scope, below.

7-47

7 Implementing Block Features

Function-call subsystems are a powerful modeling construct. You can
configure Stateflow® blocks to execute function-call subsystems, thereby
extending the capabilities of the blocks. For more information on their use in
Stateflow, see the Stateflow documentation.

7-48

Processing Frame-Based Signals

Processing Frame-Based Signals
This section explains how to create an S-function that accepts and/or
produces frame-based signals. See “Frame-Based Signals” in the “Working
with Signals” section of the Signal Processing Blockset documentation for
a comprehensive discussion of the use of frame-based signals in Simulink
models.

Note Simulating a model containing the S-function that you develop requires
a Signal Processing Blockset license.

To accept or produce frame-based signals, an S-function must perform the
following tasks:

• The S-function’s mdlInitializeSizes callback method must set the port
frame status to FRAME_YES, FRAME_NO, or FRAME_INHERITED for each of
the S-function’s I/O ports, using the ssSetInputPortFrameData and
ssSetOutputPortFrameData functions. The frame status for a port must
be set after the call to ssSetNumInputPorts and ssSetNumOutputPorts.
For example, the following code in mdlInitializeSizes specifies that
the first input port accepts a frame-based signal while the first output
port emits a sample-based signal:

ssSetNumInputPorts(S, 1);
ssSetInputPortFrameData(S, 0, FRAME_YES);
ssSetNumOutputPorts(S,1);
ssSetOutputPortFrameData(S, 0, FRAME_NO);

• The S-function should specify the dimensions of the signals that its
frame-based ports accept or produce in its mdlInitializeSizes or
mdlSetInputPortDimensionInfo and mdlSetOutputPortDimensionInfo
callback methods. Note that frame-based signals must be dimensioned as
2-D arrays. For example, the following code in mdlInitializeSizes specifies
that the first frame-based input port is dynamically sized. This S-function
must then also have an mdlSetInputPortDimensionInfo callback that sets
the specific dimensions of this input port.

7-49

7 Implementing Block Features

ssSetNumInputPorts(S, 1);

ssSetInputPortFrameData(S, 0, FRAME_YES);

ssSetInputPortMatrixDimensions(S, 0, DYNAMICALLY_SIZED, DYNAMICALLY_SIZED);

• If the frame status of any of the S-function’s input ports is inherited, the
S-function should define a mdlSetInputPortFrameData callback method.
Simulink passes the frame status that it assigns to the port, based on frame
signal propagation rules, as an argument to this callback method. The
callback method should in turn use the ssSetInputPortFrameData function
to set the port to the assigned status if it is acceptable or signal an error
using ssSetErrorStatus if it is not. If the frame status of other ports of the
S-function depend on the status inherited by one of its input ports, the
callback method can also use ssSetInputPortFrameData to set the frame
status of the other ports based on the status that the input port inherits. A
template for the mdlSetInputPortFrameData callback is shown below.

#if defined(MATLAB_MEX_FILE)

#define MDL_SET_INPUT_PORT_FRAME_DATA

static void mdlSetInputPortFrameData(SimStruct *S,

int_T portIndex,

Frame_T frameData)

{

if(!frameData==FRAME_YES) {

ssSetErrorStatus(S, "Incorrect frame status");

return;

}

ssSetInputPortFrameData(S, portIndex, frameData); /* Sets frame status */

} /* end mdlSetInputPortFrameData */

#endif

• The S-function’s mdlOutputs method should include code to process the
signals. The macro ssGetInputPortDimensions can be used in mdlOutputs
to determine the dimensions of dynamically sized frame-based inputs, as
follows:

int *dims = ssGetInputPortDimensions(S, 0);
int frameSize = dims[0];
int numChannels = dims[1];

7-50

Processing Frame-Based Signals

See the frame-based A/D converter S-function example (sfun_frmad.c) for
an example of how to create a frame-based S-function. This S-function is
one of several S-functions that manipulate frame-based signals found in the
Simulink model sfcndemo_frame.mdl.

7-51

7 Implementing Block Features

Handling Errors
When working with S-functions, it is important to handle unexpected events
such as invalid parameter values correctly.

If your S-function has parameters whose contents you need to validate, use
the following technique to report errors encountered.

ssSetErrorStatus(S,"Error encountered due to ...");
return;

In most cases, the error message is displayed in the Simulink Diagnsostics
Viewer. If the error is encountered in mdlCheckParameters as the S-function
parameters are being entered into the block dialog, the error dialog shown
below is opened. In either case, the error message is displayed along with
the name of the S-function and the associated S-function block that invoked
the error.

Note that the second argument to ssSetErrorStatus must be persistent
memory. It cannot be a local variable in your procedure. For example, the
following causes unpredictable errors.

mdlOutputs()
{

char msg[256]; /* ILLEGAL: should be "static char */
/*msg[256];"*/

sprintf(msg,"Error due to %s", string);
ssSetErrorStatus(S,msg);
return;

}

7-52

Handling Errors

Because ssSetErrorStatus does not generate exceptions, using it to
report errors in your S-function is preferable to using mexErrMsgTxt. The
mexErrMsgTxt function uses exception handling to terminate S-function
execution and return control to Simulink. To support exception handling in
S-functions, Simulink must set up exception handlers prior to each S-function
invocation. This introduces overhead into simulation.

Exception Free Code
You can avoid this overhead by ensuring that your S-function contains entirely
exception free code. Exception free code refers to code that never long-jumps.
Your S-function is not exception free if it contains any routine that, when
called, has the potential of long-jumping. For example, mexErrMsgTxt throws
an exception (i.e., long-jumps) when called, thus ending execution of your
S-function. Using mxCalloc can cause unpredictable results in the event of a
memory allocation error, because mxCalloc long-jumps. If memory allocation
is needed, use the stdlib.h calloc routine directly and perform your own
error handling.

If you do not call mexErrMsgTxt or other API routines that cause exceptions,
use the SS_OPTION_EXCEPTION_FREE_CODE S-function option. You do this by
issuing the following command in the mdlInitializeSizes function.

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

Setting this option increases the performance of your S-function by allowing
Simulink to bypass the exception-handling setup that is usually performed
prior to each S-function invocation. You must take extreme care to verify that
your code is exception free when using SS_OPTION_EXCEPTION_FREE_CODE. If
your S-function generates an exception when this option is set, unpredictable
results occur.

All mex* routines have the potential of long-jumping. Several mx* routines
also have the potential of long-jumping. To avoid any difficulties, use only the
API routines that retrieve a pointer or determine the size of parameters.
For example, the following never throw an exception: mxGetPr, mxGetData,
mxGetNumberOfDimensions, mxGetM, mxGetN, and mxGetNumberOfElements.

Code in run-time routines can also throw exceptions. Run-time routines refer
to certain S-function routines that Simulink calls during the simulation

7-53

7 Implementing Block Features

loop (see “How Simulink Interacts with C S-Functions” on page 3-59). The
run-time routines include

• mdlGetTimeOfNextVarHit

• mdlOutputs

• mdlUpdate

• mdlDerivatives

If all run-time routines within your S-function are exception free, you can
use this option:

ssSetOptions(S, SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE);

The other routines in your S-function do not have to be exception free.

ssSetErrorStatus Termination Criteria
If one of your S-function’s callback methods invokes ssSetErrorStatus
during a simulation, Simulink posts the error and terminates the
simulation as soon as the callback method returns. If your S-function’s
SS_OPTION_CALL_TERMINATE_ON_EXIT option is enabled (see ssSetOptions),
Simulink invokes your S-function’s mdlTerminate method as part of
the termination process. Otherwise, Simulink invokes your S-function’s
mdlTerminate method only if at least one block mdlStart method has
executed without error during the simulation.

Checking Array Bounds
If your S-function causes otherwise inexplicable errors, the reason might
be that the S-function is writing beyond its assigned areas in memory. You
can verify this possibility by enabling the Simulink array bounds checking
feature. This feature detects any attempt by an S-Function block to write
beyond the areas assigned to it for the following types of block data:

• Work vectors (R, I, P, D, and mode)

• States (continuous and discrete)

• Outputs

7-54

Handling Errors

To enable array bounds checking, select warning or error from the Array
bounds exceeded options list in the Debugging group on the Diagnostics
-Data Validity pane of the Configuration Parameters dialog box or enter
the following command at the MATLAB command line.

set_param(modelName, 'ArrayBoundsChecking', ValueStr)

where modelName is the name of the Simulink model and ValueStr is either
'none', 'warning', or 'error'.

7-55

7 Implementing Block Features

S-Function Examples
Most S-Function blocks require the handling of states, continuous or discrete.
The following sections discuss common types of systems that you can model in
Simulink with S-functions:

• Continuous state

• Discrete state

• Hybrid

• Variable step sample time

• Zero crossings

• Time-varying continuous transfer function

All examples are based on the C MEX-file S-function template
sfuntmpl_basic.c and on sfuntmpl_doc.c, which contains a discussion
of the S-function template.

Example of a Continuous State S-Function
The matlabroot/simulink/src/csfunc.c example shows
how to model a continuous system with states in a C MEX
S-function. This S-function is used in the Simulink model
matlabroot/toolbox/simulink/simdemos/simfeatures/sfcndemo_csfunc.mdl.
In continuous state integration, there is a set of states that the Simulink
solvers integrate using the following equations.

S-functions that contain continuous states implement a state-space equation.
The output portion is placed in mdlOutputs and the derivative portion
in mdlDerivatives. To visualize how the integration works, refer to the

7-56

S-Function Examples

flowchart in “How Simulink Interacts with C S-Functions” on page 3-59. The
output equation above corresponds to the mdlOutputs in the major time
step. Next, the example enters the integration section of the flowchart.
Here Simulink performs a number of minor time steps during which it calls
mdlOutputs and mdlDerivatives. Each of these pairs of calls is referred to
as an integration stage. The integration returns with the continuous states
updated and the simulation time moved forward. Time is moved forward
as far as possible, providing that error tolerances in the state are met. The
maximum time step is subject to constraints of discrete events such as the
actual simulation stop time and the user-imposed limit.

Note that csfunc.c specifies that the input port has direct feedthrough. This
is because matrix D is initialized to a nonzero matrix. If D is set equal to
a zero matrix in the state-space representation, the input signal isn’t used
in mdlOutputs. In this case, the direct feedthrough can be set to 0, which
indicates that csfunc.c does not require the input signal when executing
mdlOutputs.

matlabroot/simulink/src/csfunc.c
The beginning of each S-function must include #define statements for
the S-function’s name and level, along with a #include statement for the
simstruc.h header. Following these statements, the S-function can include
or define any other necessary headers, data, etc. In the csfunc.c example
shown below, in addition to the required statements, U is defined as elements
in the pointer to the first input port’s signal and static variables containing
the state-space matrices are initialized.

/* File : csfunc.c

* Abstract:

*

* Example C-file S-function for defining a continuous system.

*

* x' = Ax + Bu

* y = Cx + Du

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c.

*

* Copyright 1990-2004 The MathWorks, Inc.

*/

7-57

7 Implementing Block Features

#define S_FUNCTION_NAME csfunc

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

static real_T A[2][2]={ { -0.09, -0.01 } ,

{ 1 , 0 }

};

static real_T B[2][2]={ { 1 , -7 } ,

{ 0 , -2 }

};

static real_T C[2][2]={ { 0 , 2 } ,

{ 1 , -5 }

};

static real_T D[2][2]={ { -3 , 0 } ,

{ 1 , 0 }

};

The required S-function method mdlInitializeSizes then sets up the
following S-function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to zero.

• ssGetSFcnParamsCount determines how many parameters the user actually
entered into the S-function dialog. If the number of user-specified
parameters does not match the number returned by ssGetNumSFcnParams,
the S-function errors out.

• If the S-function parameter count passes, mdlInitializeSizes next sets
the number of continuous and discrete states using ssSetNumContStates
and ssSetNumDiscStates, respectively. In this example, there are two
continuous states and zero discrete states.

7-58

S-Function Examples

• Next, the method configures the S-function to have a single input and
output port, each with a width of two to match the dimensions of the
state-space matrices. Note that the input port is also set to have direct
feedthrough by passing a value of 1 to ssSetInputPortDirectFeedThrough.

• ssSetNumSampleTimes then specifies that there is one sample time, which
will be configured later in the mdlInitializeSampleTimes function.

• A value of 0 is passed to ssSetNumRWork, ssSetNumIWork, etc., to indicate that
none of the work vectors are used by this S-function. Note that these lines
could be omitted since zero is the default value for all of these macros. For
clarity, it is preferable to explicitly set the number of work vectors.

• Lastly, any applicable options are set using ssSetOptions. In this case, the
only option is SS_OPTION_EXCEPTION_FREE_CODE, which stipulates that
the code is exception free.

The mdlInitializeSizes function for this example is shown below.

/*====================*

* S-function methods *

====================/

/* Function: mdlInitializeSizes ===

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block's characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, 2);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 2);

ssSetInputPortDirectFeedThrough(S, 0, 1);

7-59

7 Implementing Block Features

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 2);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

The required S-function method mdlInitializeSampleTimes specifies
the S-function’s sample rates. The value CONTINOUS_SAMPLE_TIME
passed to the ssSetSampleTime macro specifies that the
S-function’s first sample rate is continuous. ssSetOffsetTime then
specifies an offset time of zero for this sample rate. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to
use the default rule to determine if submodels containing this S-function can
inherit their sample times from the parent model.

/* Function: mdlInitializeSampleTimes ===

* Abstract:

* Specifiy that we have a continuous sample time.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

The optional S-function method mdlInitializeConditions initializes the
continuous state vector. The #define statement before this method is required
or Simulink will not call this function. In the example below, ssGetContStates
is used to obtain a pointer to the continuous state vector. The length of this
vector is two, as determined by the value passed to ssSetNumContStates in
mdlInitializeSizes. The for loop then initializes each state to zero.

7-60

S-Function Examples

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

* Abstract:

* Initialize both continuous states to zero.

*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *x0 = ssGetContStates(S);

int_T lp;

for (lp=0;lp<2;lp++) {

*x0++=0.0;

}

}

The required mdlOutputs function computes the output signal of this
S-function. The beginning of the function obtains pointers to the first output
port, continuous states, and first input port. The data in these arrays is used
to solve the output equation y=Cx+Du.

/* Function: mdlOutputs ===

* Abstract:

* y = Cx + Du

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *x = ssGetContStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

UNUSED_ARG(tid); /* not used in single tasking mode */

/* y=Cx+Du */

y[0]=C[0][0]*x[0]+C[0][1]*x[1]+D[0][0]*U(0)+D[0][1]*U(1);

y[1]=C[1][0]*x[0]+C[1][1]*x[1]+D[1][0]*U(0)+D[1][1]*U(1);

}

The mdlDerivatives function calculates the continuous state derivatives.
Since this is an optional method, it must be proceeded by a #define
statement. The beginning of the function obtains pointers to the S-function’s

7-61

7 Implementing Block Features

continuous states, state derivatives, and first input port. The data in these
arrays is then used to solve the equation dx=Ax+Bu.

#define MDL_DERIVATIVES

/* Function: mdlDerivatives ===

* Abstract:

* xdot = Ax + Bu

*/

static void mdlDerivatives(SimStruct *S)

{

real_T *dx = ssGetdX(S);

real_T *x = ssGetContStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* xdot=Ax+Bu */

dx[0]=A[0][0]*x[0]+A[0][1]*x[1]+B[0][0]*U(0)+B[0][1]*U(1);

dx[1]=A[1][0]*x[0]+A[1][1]*x[1]+B[1][0]*U(0)+B[1][1]*U(1);

}

All S-functions must contain an mdlTerminate function. In this example,
the function is empty.

/* Function: mdlTerminate ===

* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

}

The trailer of this S-function must include the files necessary for simulation
or code generation, as follows.

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

7-62

S-Function Examples

Note The mdlOutputs and mdlTerminate functions both
use the macro UNUSED_ARG. This macro is defined in
matlabroot/simulink/include/simstruc_types.h and is used to indicate
that one of the input arguments to these callbacks is required even though it
is not used in the callbacks. The macro UNUSED_ARG accepts only a single
input argument so must be called once for each callback input argument that
is not used in the callback.

Example of a Discrete State S-Function
The matlabroot/simulink/src/dsfunc.c example
shows how to model a discrete system in a C MEX
S-function. This S-function is used in the Simulink model
matlabroot/toolbox/simulink/simdemos/simfeatures/sfcndemo_dsfunc.mdl.
Discrete systems can be modeled by the following set of equations.

dsfunc.c implements a discrete state-space equation. The output portion is
placed in mdlOutputs and the update portion in mdlUpdate. To visualize
how the simulation works, refer to the flowchart in “How Simulink Interacts
with C S-Functions” on page 3-59. The output equation above corresponds
to the mdlOutputs in the major time step. The preceding update equation
corresponds to the mdlUpdate in the major time step. If your model does
not contain continuous elements, the integration phase is skipped and time
is moved forward to the next discrete sample hit.

matlabroot/simulink/src/dsfunc.c
The beginning of each S-function must include #define statements for
the S-function’s name and level, along with a #include statement for the
simstruc.h header. Following these statements, the S-function can include

7-63

7 Implementing Block Features

or define any other necessary headers, data, etc. In the dsfunc.c example
shown below, in addition to the required statements, U is defined as elements
in the pointer to the first input port’s signal and static variables containing
the state-space matrices are initialized.

/* File : dsfunc.c

* Abstract:

*

* Example C-file S-function for defining a discrete system.

*

* x(n+1) = Ax(n) + Bu(n)

* y(n) = Cx(n) + Du(n)

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c.

*

* Copyright 1990-2004 The MathWorks, Inc.

*/

#define S_FUNCTION_NAME dsfunc

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

static real_T A[2][2]={ { -1.3839, -0.5097 } ,

{ 1 , 0 }

};

static real_T B[2][2]={ { -2.5559, 0 } ,

{ 0 , 4.2382 }

};

static real_T C[2][2]={ { 0 , 2.0761 } ,

{ 0 , 7.7891 }

};

static real_T D[2][2]={ { -0.8141, -2.9334 } ,

{ 1.2426, 0 }

};

7-64

S-Function Examples

The required S-function method mdlInitializeSizes then sets up the
following S-function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to zero.

• ssGetSFcnParamsCount determines how many parameters the user actually
entered into the S-function dialog. If the number of user-specified
parameters does not match the number returned by ssGetNumSFcnParams,
the S-function errors out.

• If the S-function parameter count passes, mdlInitializeSizes next sets
the number of continuous and discrete states using ssSetNumContStates and
ssSetNumDiscStates, respectively. In this example, there are no continuous
states and two discrete states.

• Next, the method configures the S-function to have a single input and
output port, each with a width of two to match the dimensions of the
state-space matrices. Note that the input port is also set to have direct
feedthrough by passing a value of 1 to ssSetInputPortDirectFeedThrough.

• ssSetNumSampleTimes then specifies that there is one sample time, which
will be configured later in the mdlInitializeSampleTimes function.

• A value of 0 is passed to ssSetNumRWork, ssSetNumIWork, etc., to indicate that
none of the work vectors are used by this S-function. Note that these lines
could be omitted since zero is the default value for all of these macros. For
clarity, it is preferable to explicitly set the number of work vectors.

• Lastly, any applicable options are set using ssSetOptions. In this case, the
only option is SS_OPTION_EXCEPTION_FREE_CODE, which stipulates that
the code is exception free.

The mdlInitializeSizes function for this example is shown below.

/*====================*

* S-function methods *

====================/

/* Function: mdlInitializeSizes ===

* Abstract:

* The sizes information is used by Simulink to determine the S-function

7-65

7 Implementing Block Features

* block's characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 2);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 2);

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 2);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

The required S-function method mdlInitializeSampleTimes specifies
the S-function’s sample rates. A call to ssSetSampleTime sets
this S-function’s first sample period to 1.0. ssSetOffsetTime then
specifies an offset time of zero for the first sample rate. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to
use the default rule to determine if submodels containing this S-function can
inherit their sample times from the parent model.

/* Function: mdlInitializeSampleTimes ===

* Abstract:

7-66

S-Function Examples

* Specifiy a sample time 0f 1.0.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, 1.0);

ssSetOffsetTime(S, 0, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

The optional S-function method mdlInitializeConditions initializes
the discrete state vector. The #define statement before this method is
required or Simulink will not call this function. In the example below,
ssGetRealDiscStates is used to obtain a pointer to the state vector. The length
of this vector is two, as determined by the value passed to ssSetNumDiscStates
in mdlInitializeSizes. The for loop then initializes each state to one.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

* Abstract:

* Initialize both discrete states to one.

*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *x0 = ssGetRealDiscStates(S);

int_T lp;

for (lp=0;lp<2;lp++) {

*x0++=1.0;

}

}

The required mdlOutputs function computes the output signal of this
S-function. The beginning of the function obtains pointers to the first output
port, discrete states, and first input port. The data in these arrays is then
used to solve the output equation y=Cx+Du.

/* Function: mdlOutputs ===

* Abstract:

* y = Cx + Du

*/

7-67

7 Implementing Block Features

static void mdlOutputs(SimStruct *S, int_T tid)

{

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *x = ssGetRealDiscStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

UNUSED_ARG(tid); /* not used in single tasking mode */

/* y=Cx+Du */

y[0]=C[0][0]*x[0]+C[0][1]*x[1]+D[0][0]*U(0)+D[0][1]*U(1);

y[1]=C[1][0]*x[0]+C[1][1]*x[1]+D[1][0]*U(0)+D[1][1]*U(1);

}

The mdlUpdate function is called once every major integration time step to
update the discrete states’ values. Since this is an optional method, it must
be proceeded by a #define statement. The beginning of the function obtains
pointers to the S-function’s discrete states and first input port. The data in
these arrays is then used to solve the equation dx=Ax+Bu, which is stored in
the temporary variable tempX before being assigned into the discrete state
vector x.

#define MDL_UPDATE

/* Function: mdlUpdate ==

* Abstract:

* xdot = Ax + Bu

*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

real_T tempX[2] = {0.0, 0.0};

real_T *x = ssGetRealDiscStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

UNUSED_ARG(tid); /* not used in single tasking mode */

/* xdot=Ax+Bu */

tempX[0]=A[0][0]*x[0]+A[0][1]*x[1]+B[0][0]*U(0)+B[0][1]*U(1);

tempX[1]=A[1][0]*x[0]+A[1][1]*x[1]+B[1][0]*U(0)+B[1][1]*U(1);

x[0]=tempX[0];

x[1]=tempX[1];

7-68

S-Function Examples

}

All S-functions must contain an mdlTerminate function. In this example,
the function is empty.

/* Function: mdlTerminate ===

* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

}

The trailer of this S-function must include the files necessary for simulation
or code generation, as follows.

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Note The mdlOutputs and mdlTerminate functions
both use the macro UNUSED_ARG. This macro is defined
inmatlabroot/simulink/include/simstruc_types.h and is used to indicate
that one of the input arguments to these callbacks is required even though it
is not used in the callbacks. The macro UNUSED_ARG accepts only a single
input argument so must be called once for each callback input argument that
is not used in the callback.

Example of a Hybrid System S-Function
The S-function matlabroot/simulink/src/mixedm.c is an
example of a hybrid (a combination of continuous and discrete
states) system. mixedm.c combines elements of csfunc.c and
dsfunc.c. This S-function is used in the Simulink model
matlabroot/toolbox/simulink/simdemos/simfeatures/sfcndemo_mixedm.mdl.

7-69

7 Implementing Block Features

If you have a hybrid system, place your continuous equations in
mdlDerivatives and your discrete equations in mdlUpdate. In addition,
you need to check for sample hits to determine at what point your
S-function is being called.

In Simulink block diagram form, the S-function mixedm.c looks like

which implements a continuous integrator followed by a discrete unit delay.

Because there are no tasks to complete at termination, mdlTerminate is an
empty function. mdlDerivatives calculates the derivatives of the continuous
states of the state vector, x, and mdlUpdate contains the equations used to
update the discrete state vector, xD.

matlabroot/simulink/src/mixedm.c
The beginning of each S-function must include #define statements for
the S-function’s name and level, along with a #include statement for the
simstruc.h header. Following these statements, the S-function can include
or define any other necessary headers, data, etc. In the mixedm.c example
shown below, in addition to the required statements, U is defined as elements
in the pointer to the first input port’s signal

/* File : mixedm.c

* Abstract:

*

* An example S-function illustrating multiple sample times by implementing

* integrator -> ZOH(Ts=1second) -> UnitDelay(Ts=1second)

* with an initial condition of 1.

* (e.g. an integrator followed by unit delay operation).

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c

*

* Copyright 1990-2004 The MathWorks, Inc.

*/

#define S_FUNCTION_NAME mixedm

7-70

S-Function Examples

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

The required S-function method mdlInitializeSizes then sets up the
following S-function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to zero.

• ssGetSFcnParamsCount determines how many parameters the user actually
entered into the S-function dialog. If the number of user-specified
parameters does not match the number returned by ssGetNumSFcnParams,
the S-function errors out.

• If the S-function parameter count passes, mdlInitializeSizes next sets
the number of continuous and discrete states using ssSetNumContStates and
ssSetNumDiscStates, respectively. In this example, there is one continuous
state and one discrete state.

• A value of 1 is passed to ssSetNumRWork to specify that the length of the
floating-point work vector is one. Note that none of the other work vectors
are initialized in this function so their widths are set to their default values
of zero.

• Next, the method uses ssSetNumInputPorts and ssSetNumOutputPorts to
configure the S-function to have a single input and output port, each with a
width of one. Note that the input port is also set to have direct feedthrough
by passing a value of 1 to ssSetInputPortDirectFeedThrough.

• This S-function assigns sample times using a hybrid block-based and
port-based method. The macro ssSetNumSampleTimes specifies that
there are two block-based sample times, which will be configured
later in the mdlInitializeSampleTimes function. The macros
ssSetInputPortSampleTime and ssSetInputPortOffsetTime initializes
the input port to have a continuous sample time with an offset of zero.
Similarly, ssSetOutputPortSampleTime and ssSetOutputPortOffsetTime
initializes the output port sample time to 1 with an offset of zero.

• Lastly, any applicable options are set using ssSetOptions. In this case,
two options are set. SS_OPTION_EXCEPTION_FREE_CODE stipulates that

7-71

7 Implementing Block Features

the code is exception free and SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED
indicates that there is a combination of block-based and port-based sample
times.

The mdlInitializeSizes function for this example is shown below.

====================

* S-function methods *

====================/

/* Function: mdlInitializeSizes ===

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block's characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, 1);

ssSetNumDiscStates(S, 1);

ssSetNumRWork(S, 1); /* for zoh output feeding the delay operator */

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 1);

ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetInputPortSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetInputPortOffsetTime(S, 0, 0.0);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetOutputPortSampleTime(S, 0, 1.0);

ssSetOutputPortOffsetTime(S, 0, 0.0);

ssSetNumSampleTimes(S, 2);

/* Take care when specifying exception free code - see sfuntmpl_doc.c. */

7-72

S-Function Examples

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |

SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED));

} /* end mdlInitializeSizes */

The required S-function method mdlInitializeSampleTimes specifies the
S-function’s block-based sample rates. The first call to ssSetSampleTime
specifies that the first sample rate is continuous, with the subsequent
call to ssSetOffsetTime setting the offset to zero. The second call to this
pair of macros sets the second sample time to 1 with an offset of zero.
Note, the S-function’s port-based sample times set in mdlInitializeSizes
must all be registered as a block-based sample time. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to
use the default rule to determine if submodels containing this S-function can
inherit their sample times from the parent model.

/* Function: mdlInitializeSampleTimes ===

* Abstract:

* Two tasks: One continuous, one with discrete sample time of 1.0.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

ssSetSampleTime(S, 1, 1.0);

ssSetOffsetTime(S, 1, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

} /* end mdlInitializeSampleTimes */

The optional S-function method mdlInitializeConditions initializes the
continuous and discrete state vectors. The #define statement before this
method is required or Simulink will not call this function. In the example
below, ssGetContStates is used to obtain a pointer to the continuous state
vector and ssGetRealDiscStates is similarly used for the discrete state vector.
The state’s initialize conditions are then set to one.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

* Abstract:

7-73

7 Implementing Block Features

* Initialize both continuous states to one.

*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *xC0 = ssGetContStates(S);

real_T *xD0 = ssGetRealDiscStates(S);

xC0[0] = 1.0;

xD0[0] = 1.0;

} /* end mdlInitializeConditions */

The required mdlOutputs function performs computations based on the
current task. The macro ssIsContinuousTask checks if the continuous task is
executing. If this macro returns true, ssIsSpecialSampleHit then checks if
the discrete sample rate is also executing. If this macros also returns true,
the value stored in the floating-point work vector is set equal to the current
value of the continuous state, via pointers obtained using ssGetRWork and
ssGetContStates, respectively. The floating-point work vector is later used
in mdlUpdate as the input to the zero-order hold. Updating the work vector
in mdlOutputs ensures that the correct values are available during the call
to mdlUpdate. Finally, if the S-function is running at its discrete rate, i.e.,
the call to ssIsSampleHit returns true, the output is set to be the value
of the discrete state.

/* Function: mdlOutputs ===

* Abstract:

* y = xD, and update the zoh internal output.

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

/* update the internal "zoh" output */

if (ssIsContinuousTask(S, tid)) {

if (ssIsSpecialSampleHit(S, 1, 0, tid)) {

real_T *zoh = ssGetRWork(S);

real_T *xC = ssGetContStates(S);

*zoh = *xC;

}

}

7-74

S-Function Examples

/* y=xD */

if (ssIsSampleHit(S, 1, tid)) {

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *xD = ssGetRealDiscStates(S);

y[0]=xD[0];

}

} /* end mdlOutputs */

The mdlUpdate function is called once every major integration time step to
update the discrete states’ values. Since this is an optional method, it must be
proceeded by a #define statement. The heart of the function is wrapped in a
call to ssIsSampleHit to ensure the code is called only when the S-function
is operating at its discrete rate. The function then obtains pointers to the
S-function’s discrete states and floating-point work vector. The value of the
discrete state is updated using the value stored in the work vector.

#define MDL_UPDATE

/* Function: mdlUpdate ==

* Abstract:

* xD = xC

*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

UNUSED_ARG(tid); /* not used in single tasking mode */

/* xD=xC */

if (ssIsSampleHit(S, 1, tid)) {

real_T *xD = ssGetRealDiscStates(S);

real_T *zoh = ssGetRWork(S);

xD[0]=*zoh;

}

} /* end mdlUpdate */

The mdlDerivatives function calculates the continuous state derivatives.
Since this is an optional method, it must be proceeded by a #define
statement. The beginning of the function obtains pointers to the S-function’s
state derivatives and first input port. The value of the state derivative is then
set equal to the value of the first input.

7-75

7 Implementing Block Features

#define MDL_DERIVATIVES

/* Function: mdlDerivatives ===

* Abstract:

* xdot = U

*/

static void mdlDerivatives(SimStruct *S)

{

real_T *dx = ssGetdX(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* xdot=U */

dx[0]=U(0);

} /* end mdlDerivatives */

All S-functions must contain an mdlTerminate function. In this example,
the function is empty

/* Function: mdlTerminate ===

* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

}

The trailer of this S-function must include the files necessary for simulation
or code generation, as follows.

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

7-76

S-Function Examples

Note The mdlUpdate and mdlTerminate functions
both use the macro UNUSED_ARG. This macro is defined
inmatlabroot/simulink/include/simstruc_types.h and is used to indicate
that one of the input arguments to these callbacks is required even though it
is not used in these callbacks. The macro UNUSED_ARG accepts only a single
input argument so must be called once for each callback input argument that
is not used in the callback.

Example of a Variable-Step S-Function
The example S-function matlabroot/simulink/src/vsfunc.c
uses a variable-step sample time. This S-function is used in the Simulink model
matlabroot/toolbox/simulink/simdemos/simfeatures/sfcndemo_vsfunc.mdl.
Variable step-size functions require a call to mdlGetTimeOfNextVarHit, which
is an S-function routine that calculates the time of the next sample hit.
S-functions that use the variable-step sample time can only be used with
variable-step solvers. vsfunc is a discrete S-function that delays its first
input by an amount of time determined by the second input.

The output of vsfunc is simply the input u delayed by a variable amount
of time. mdlOutputs sets the output y equal to state x. mdlUpdate
sets the state vector x equal to u, the input vector. This example calls
mdlGetTimeOfNextVarHit, an S-function routine that calculates and sets
the time of the next hit, that is, the time when vsfunc is next called. In
mdlGetTimeOfNextVarHit, the macro ssGetInputPortRealSignalPtrs is used
to get a pointer to the input u. Then this call is made.

ssSetTNext(S, ssGetT(S)(*u[1]));

The macro ssGetT gets the simulation time t. The second input to the block,
(*u[1]), is added to t, and the macro ssSetTNext sets the time of the next hit
equal to t+(*u[1]), delaying the output by the amount of time set in (*u[1]).

matlabroot/simulink/src/vsfunc.c
The beginning of each S-function must include #define statements for
the S-function’s name and level, along with a #include statement for the
simstruc.h header. Following these statements, the S-function can include
or define any other necessary headers, data, etc. . In the vsfunc.c example

7-77

7 Implementing Block Features

shown below, in addition to the required statements, U is defined as elements
in the pointer to the first input port’s signal

/* File : vsfunc.c

* Abstract:

*

* Variable step S-function example.

* This example S-function illustrates how to create a variable step

* block in Simulink. This block implements a variable step delay

* in which the first input is delayed by an amount of time determined

* by the second input:

*

* dt = u(2)

* y(t+dt) = u(t)

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c.

*

* Copyright 1990-2004 The MathWorks, Inc.

*/

#define S_FUNCTION_NAME vsfunc

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

The required S-function method mdlInitializeSizes then sets up the
following S-function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to zero.

• ssGetSFcnParamsCount determines how many parameters the user actually
entered into the S-function dialog. If the number of user-specified
parameters does not match the number returned by ssGetNumSFcnParams,
the S-function errors out.

• If the S-function parameter count passes, mdlInitializeSizes next sets
the number of continuous and discrete states using ssSetNumContStates and

7-78

S-Function Examples

ssSetNumDiscStates, respectively. In this example, there are no continuous
states and one discrete state.

• Next, the method uses ssSetNumInputPorts and ssSetNumOutputPorts to
configure the S-function to have a single input and output port. The input
port is assigned a width of two using ssSetInputPortWidth, while the
output port is assigned a width of one using ssSetOutputPortWidth. Note
that the input port is also set to have direct feedthrough by passing a value
of 1 to ssSetInputPortDirectFeedThrough.

• ssSetNumSampleTimes then specifies that there is one sample time, which
will be configured later in the mdlInitializeSampleTimes function.

• A value of 0 is passed to ssSetNumRWork, ssSetNumIWork, etc., to indicate that
none of the work vectors are used by this S-function. Note that these lines
could be omitted since zero is the default value for all of these macros. For
clarity, it is preferable to explicitly set the number of work vectors.

• Next, ssGetSimMode is used to check if the S-function is being run
in a simulation or with Real-Time Workshop. If the return value is
SS_SIMMODE_RTWGEN, indicating use with Real-Time Workshop, and a
variable-step solver is being used (a value of true is returned from
ssIsVariableStepSolver) then the S-function errors out.

• Lastly, any applicable options are set using ssSetOptions. In this case, the
only option is SS_OPTION_EXCEPTION_FREE_CODE, which stipulates that
the code is exception free.

The mdlInitializeSizes function for this example is shown below.

/* Function: mdlInitializeSizes ===

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block's characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, 0);

7-79

7 Implementing Block Features

ssSetNumDiscStates(S, 1);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 2);

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

if (ssGetSimMode(S) == SS_SIMMODE_RTWGEN && !ssIsVariableStepSolver(S)) {

ssSetErrorStatus(S, "S-function vsfunc.c cannot be used with RTW "

"and Fixed-Step Solvers because it contains variable"

" sample time");

}

/* Take care when specifying exception free code - see sfuntmpl_doc.c */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

The required S-function method mdlInitializeSampleTimes specifies the
S-function’s sample rates. The input argument VARIABLE_SAMPLE_TIME
passed to ssSetSampleTime specifies that this S-function has a
variable-step sample time. In this case, vsfunc.c must implement the
mdlGetTimeOfNextVarHit method to calculate the time of the next sample
hit. ssSetOffsetTime then specifies an offset time of zero. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to
use the default rule to determine if submodels containing this S-function can
inherit their sample times from the parent model.

/* Function: mdlInitializeSampleTimes ===

* Abstract:

* Variable-Step S-function

*/

7-80

S-Function Examples

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, VARIABLE_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

The optional S-function method mdlInitializeConditions initializes
the discrete state vector. The #define statement before this method is
required or Simulink will not call this function. In the example below,
ssGetRealDiscStates is used to obtain a pointer to the discrete state vector.
The value of the first state is then initialized to zero.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

* Abstract:

* Initialize discrete state to zero.

*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *x0 = ssGetRealDiscStates(S);

x0[0] = 0.0;

}

The optional mdlGetTimeOfNextVarHit calculates the time of the next sample
hit. Since this is generally an optional method for S-functions, although
required for S-functions using a variable-step solver, it must be proceeded by
a #define statement. First, this method obtains a pointer to the first input
port’s signal using ssGetInputPortRealSignalPtrs. The input signal’s second
element is checked to ensure it is positive. If the check passes, the macro
ssGetT gets the simulation time and the macro ssSetTNext sets the time of
the next hit equal to t+(*U[1]), delaying the output by the amount of time
specified by the input’s second element (*U[1]).

#define MDL_GET_TIME_OF_NEXT_VAR_HIT
static void mdlGetTimeOfNextVarHit(SimStruct *S)
{

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

7-81

7 Implementing Block Features

/* Make sure input will increase time */
if (U(1) <= 0.0) {

/* If not, abort simulation */
ssSetErrorStatus(S,"Variable step control input must be "

"greater than zero");
return;

}
ssSetTNext(S, ssGetT(S)+U(1));

}

The required mdlOutputs function computes the output signal of this
S-function. The beginning of the function obtains pointers to the first output
port and discrete state. The output is then assigned the current value of
the state.

/* Function: mdlOutputs ===

* Abstract:

* y = x

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *x = ssGetRealDiscStates(S);

/* Return the current state as the output */

y[0] = x[0];

}

The mdlUpdate function updates the discrete state’s value. Since this is an
optional method, it must be proceeded by a #define statement. The beginning
of the function obtains pointers to the S-function’s discrete state and first
input port. The value of the first element of the first input port signal is
then assigned to the state.

#define MDL_UPDATE

/* Function: mdlUpdate ==

* Abstract:

* This function is called once for every major integration time step.

* Discrete states are typically updated here, but this function is useful

* for performing any tasks that should only take place once per integration

7-82

S-Function Examples

* step.

*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

real_T *x = ssGetRealDiscStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

x[0]=U(0);

}

All S-functions must contain an mdlTerminate function. In this example,
the function is empty.

/* Function: mdlTerminate ===

* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate(SimStruct *S)

{

}

The trailer of this S-function must include the files necessary for simulation
or code generation, as follows.

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Example of a Zero Crossing S-Function
The example S-function matlabroot/simulink/src/sfun_zc_sat.c
demonstrates how to implement a Saturation block.
This S-function is used in the Simulink model
matlabroot/toolbox/simulink/simdemos/simfeatures/-
sfcndemo_sfun_zc_sat.mdl. This S-function is designed to work with either
fixed- or variable-step solvers. When this S-function inherits a continuous
sample time and a variable-step solver is being used, a zero-crossings
algorithm is used to locate the exact points at which the saturation occurs.

7-83

7 Implementing Block Features

matlabroot/simulink/src/sfun_zc_sat.c
The beginning of each S-function must include #define statements for
the S-function’s name and level, along with a #include statement for the
simstruc.h header. Following these statements, the S-function can include or
define any other necessary headers, data, etc. This example defines various
parameters associated with the upper and lower saturation bounds.

/* File : sfun_zc_sat.c

* Abstract:

*

* Example of an S-function which has nonsampled zero crossings to

* implement a saturation function. This S-function is designed to be

* used with a variable or fixed step solver.

*

* A saturation is described by three equations

*

* (1) y = UpperLimit

* (2) y = u

* (3) y = LowerLimit

*

* and a set of inequalities that specify which equation to use

*

* if UpperLimit < u then use (1)

* if LowerLimit <= u <= UpperLimit then use (2)

* if u < LowerLimit then use (3)

*

* A key fact is that the valid equation 1, 2, or 3, can change at

* any instant. Nonsampled zero crossing support helps the variable step

* solvers locate the exact instants when behavior switches from one equation

* to another.

*

* Copyright 1990-2004 The MathWorks, Inc.

*/

#define S_FUNCTION_NAME sfun_zc_sat

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

7-84

S-Function Examples

/*========================*

* General Defines/macros *

========================/

/* index to Upper Limit */

#define I_PAR_UPPER_LIMIT 0

/* index to Lower Limit */

#define I_PAR_LOWER_LIMIT 1

/* total number of block parameters */

#define N_PAR 2

/*

* Make access to mxArray pointers for parameters more readable.

*/

#define P_PAR_UPPER_LIMIT (ssGetSFcnParam(S,I_PAR_UPPER_LIMIT))

#define P_PAR_LOWER_LIMIT (ssGetSFcnParam(S,I_PAR_LOWER_LIMIT))

This S-function next implements the mdlCheckParameters method to check
the validity of the S-function dialog parameters. Since this is an optional
method, it must be proceeded by a #define statement. The #if defined
statement then checks that this function is being compiled as a MEX-file,
instead of for use with Real-Time Workshop. The body of the function
performs basic checks to ensure the user entered real vectors of equal length
for the upper and lower saturation limits. If the parameter checks fail, the
S-function errors out.

#define MDL_CHECK_PARAMETERS

#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

/* Function: mdlCheckParameters ===

* Abstract:

* Check that parameter choices are allowable.

*/

static void mdlCheckParameters(SimStruct *S)

{

int_T i;

int_T numUpperLimit;

int_T numLowerLimit;

7-85

7 Implementing Block Features

const char *msg = NULL;

/*

* check parameter basics

*/

for (i = 0; i < N_PAR; i++) {

if (mxIsEmpty(ssGetSFcnParam(S,i)) ||

mxIsSparse(ssGetSFcnParam(S,i)) ||

mxIsComplex(ssGetSFcnParam(S,i)) ||

!mxIsNumeric(ssGetSFcnParam(S,i))) {

msg = "Parameters must be real vectors.";

goto EXIT_POINT;

}

}

/*

* Check sizes of parameters.

*/

numUpperLimit = mxGetNumberOfElements(P_PAR_UPPER_LIMIT);

numLowerLimit = mxGetNumberOfElements(P_PAR_LOWER_LIMIT);

if ((numUpperLimit != 1) &&

(numLowerLimit != 1) &&

(numUpperLimit != numLowerLimit)) {

msg = "Number of input and output values must be equal.";

goto EXIT_POINT;

}

/*

* Error exit point

*/

EXIT_POINT:

if (msg != NULL) {

ssSetErrorStatus(S, msg);

}

}

#endif /* MDL_CHECK_PARAMETERS */

The required S-function method mdlInitializeSizes then sets up the
following S-function characteristics.

7-86

S-Function Examples

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to two, as defined previously in the variable N_PAR.

• If this method is compiled as a MEX-file, ssGetSFcnParamsCount determines
how many parameters the user actually entered into the S-function dialog.
If the number of user-specified parameters matches the number returned
by ssGetNumSFcnParams, the method calls mdlCheckParameters to check the
validity of the user-entered data. Otherwise, the S-function errors out.

• If the parameter check passes, the S-function determines the maximum
number of elements entered into either the upper or lower saturation limit
parameter. This number is needed later to determine the appropriate
output width.

• Next, the number of continuous and discrete states is set using
ssSetNumContStates and ssSetNumDiscStates, respectively. In this example,
there are no continuous or discrete states.

• ssSetNumOutputPorts specifies that the S-function has a single output
port. The width of this output port, set using ssSetOutputPortWidth, is
either equal to the maximum number of elements in the upper or lower
saturation limit or is dynamically sized. Similar code is then included to
specify a single input port. Note that the input port is also set to have direct
feedthrough by passing a value of 1 to ssSetInputPortDirectFeedThrough.

• ssSetNumSampleTimes then specifies that there is one sample time, which
will be configured later in the mdlInitializeSampleTimes function.

• A value of 0 is passed to ssSetNumRWork, ssSetNumIWork, and ssSetNumPWork
to indicate that these work vectors are not used by this S-function. Note
that these lines could be omitted since zero is the default value for all of
these macros. For clarity, it is preferable to explicitly set the number of
work vectors.

• The work vectors necessary for zero-crossing detection are initialized
using ssSetNumModes and ssSetNumNonsampledZCs. The length of these
dynamically sized vectors will be specified later in mdlSetWorkWidths.

• Lastly, any applicable options are set using ssSetOptions. In this case,
SS_OPTION_EXCEPTION_FREE_CODE stipulates that the code is exception free
and SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION permits scalar expansion
of the input without having to provide an mdlSetInputPortWidth function.

The mdlInitializeSizes function for this example is shown below.

7-87

7 Implementing Block Features

/* Function: mdlInitializeSizes ===

* Abstract:

* Initialize the sizes array.

*/

static void mdlInitializeSizes(SimStruct *S)

{

int_T numUpperLimit, numLowerLimit, maxNumLimit;

/*

* Set and Check parameter count

*/

ssSetNumSFcnParams(S, N_PAR);

#if defined(MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

mdlCheckParameters(S);

if (ssGetErrorStatus(S) != NULL) {

return;

}

} else {

return; /* Parameter mismatch will be reported by Simulink */

}

#endif

/*

* Get parameter size info.

*/

numUpperLimit = mxGetNumberOfElements(P_PAR_UPPER_LIMIT);

numLowerLimit = mxGetNumberOfElements(P_PAR_LOWER_LIMIT);

if (numUpperLimit > numLowerLimit) {

maxNumLimit = numUpperLimit;

} else {

maxNumLimit = numLowerLimit;

}

/*

* states

*/

ssSetNumContStates(S, 0);

7-88

S-Function Examples

ssSetNumDiscStates(S, 0);

/*

* outputs

* The upper and lower limits are scalar expanded

* so their size determines the size of the output

* only if at least one of them is not scalar.

*/

if (!ssSetNumOutputPorts(S, 1)) return;

if (maxNumLimit > 1) {

ssSetOutputPortWidth(S, 0, maxNumLimit);

} else {

ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

}

/*

* inputs

* If the upper or lower limits are not scalar then

* the input is set to the same size. However, the

* ssSetOptions below allows the actual width to

* be reduced to 1 if needed for scalar expansion.

*/

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (maxNumLimit > 1) {

ssSetInputPortWidth(S, 0, maxNumLimit);

} else {

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

}

/*

* sample times

*/

ssSetNumSampleTimes(S, 1);

/*

* work

7-89

7 Implementing Block Features

*/

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

/*

* Modes and zero crossings:

* If we have a variable-step solver and this block has a continuous

* sample time, then

* o One mode element will be needed for each scalar output

* in order to specify which equation is valid (1), (2), or (3).

* o Two ZC elements will be needed for each scalar output

* in order to help the solver find the exact instants

* at which either of the two possible "equation switches"

* One will be for the switch from eq. (1) to (2);

* the other will be for eq. (2) to (3) and vice versa.

* otherwise

* o No modes and nonsampled zero crossings will be used.

*

*/

ssSetNumModes(S, DYNAMICALLY_SIZED);

ssSetNumNonsampledZCs(S, DYNAMICALLY_SIZED);

/*

* options

* o No mexFunctions and no problematic mxFunctions are called

* so the exception free code option safely gives faster simulations.

* o Scalar expansion of the inputs is desired. The option provides

* this without the need to write mdlSetOutputPortWidth and

* mdlSetInputPortWidth functions.

*/

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |

SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION));

} /* end mdlInitializeSizes */

The required S-function method mdlInitializeSampleTimes specifies the
S-function’s sample rates. The input argumentINHERITED_SAMPLE_TIME
passed to ssSetSampleTime specifies that this S-function

7-90

S-Function Examples

inherits its sample time from its driving block. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to
use the default rule to determine if submodels containing this S-function can
inherit their sample times from the parent model.

/* Function: mdlInitializeSampleTimes ===

* Abstract:

* Specify that the block is continuous.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

The size of the zero-crossing detection work vectors is set in
mdlSetWorkWidths. Since this is an optional method, it must be proceeded
by a #define statement. The #if defined statement then checks that this
function is being compiled as a MEX-file. Zero-crossing detection can only
be done when the S-function is running at a continuous sample rate using
a variable-step solver. The if statement uses ssIsVariableStepSolver,
ssGetSampleTime, and ssGetOffsetTime to determine if this condition is met.
If so, the number of modes is set equal to the width of the first output port
and the number of nonsampled zero crossings is set to twice this amount.
Otherwise, both values are set to zero.

#define MDL_SET_WORK_WIDTHS

#if defined(MDL_SET_WORK_WIDTHS) && defined(MATLAB_MEX_FILE)

/* Function: mdlSetWorkWidths ===

* The width of the Modes and the ZCs depends on the width of the output.

* This width is not always known in mdlInitializeSizes so it is handled

* here.

*/

static void mdlSetWorkWidths(SimStruct *S)

{

int nModes;

int nNonsampledZCs;

if (ssIsVariableStepSolver(S) &&

7-91

7 Implementing Block Features

ssGetSampleTime(S,0) == CONTINUOUS_SAMPLE_TIME &&

ssGetOffsetTime(S,0) == 0.0) {

int numOutput = ssGetOutputPortWidth(S, 0);

/*

* modes and zero crossings

* o One mode element will be needed for each scalar output

* in order to specify which equation is valid (1), (2), or (3).

* o Two ZC elements will be needed for each scalar output

* in order to help the solver find the exact instants

* at which either of the two possible "equation switches"

* One will be for the switch from eq. (1) to (2);

* the other will be for eq. (2) to (3) and vice versa.

*/

nModes = numOutput;

nNonsampledZCs = 2 * numOutput;

} else {

nModes = 0;

nNonsampledZCs = 0;

}

ssSetNumModes(S,nModes);

ssSetNumNonsampledZCs(S,nNonsampledZCs);

}

#endif /* MDL_SET_WORK_WIDTHS */

After declaring variables for the input and output signals, the mdlOutputs
functions uses an if-else statement to create blocks of code used to calculate
the output signal based on whether the S-function uses a fixed-step or
variable-step solver. The if statement queries the length of the nonsampled
zero crossings work vector. If the length, set in mdlWorkWidths, is zero then
no zero-crossing detection is done and the output signals are calculated
directly from the input signals. Otherwise, the function uses the mode work
vector to determine how to calculate the output signal. If the simulation
is at a major time step, i.e., ssIsMajorTimeStep returns true, mdlOutputs
determines which mode the simulation is running in, either saturated at the
upper limit, saturated at the lower limit, or not saturated. Then, for both
major and minor time steps, the function calculates an output based on this
mode. Note, if the mode changed between the previous and current time

7-92

S-Function Examples

step, then a zero-crossing occurred. The mdlZeroCrossings function, not
mdlOutputs, is used to indicate this crossing to the solver.

/* Function: mdlOutputs ===

* Abstract:

*

* A saturation is described by three equations

*

* (1) y = UpperLimit

* (2) y = u

* (3) y = LowerLimit

*

* When this block is used with a fixed-step solver or it has a noncontinuous

* sample time, the equations are used as it

*

* Now consider the case of this block being used with a variable-step solver

* and it has a continusous sample time. Solvers work best on smooth problems.

* In order for the solver to work without chattering, limit cycles, or

* similar problems, it is absolutely crucial that the same equation be used

* throughout the duration of a MajorTimeStep. To visualize this, consider

* the case of the Saturation block feeding an Integrator block.

*

* To implement this rule, the mode vector is used to specify the

* valid equation based on the following:

*

* if UpperLimit < u then use (1)

* if LowerLimit <= u <= UpperLimit then use (2)

* if u < LowerLimit then use (3)

*

* The mode vector is changed only at the beginning of a MajorTimeStep.

*

* During a minor time step, the equation specified by the mode vector

* is used without question. Most of the time, the value of u will agree

* with the equation specified by the mode vector. However, sometimes u's

* value will indicate a different equation. Nonetheless, the equation

* specified by the mode vector must be used.

*

* When the mode and u indicate different equations, the corresponding

* calculations are not correct. However, this is not a problem. From

* the ZC function, the solver will know that an equation switch occurred

7-93

7 Implementing Block Features

* in the middle of the last MajorTimeStep. The calculations for that

* time step will be discarded. The ZC function will help the solver

* find the exact instant at which the switch occurred. Using this knowledge,

* the length of the MajorTimeStep will be reduced so that only one equation

* is valid throughout the entire time step.

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

real_T *y = ssGetOutputPortRealSignal(S,0);

int_T numOutput = ssGetOutputPortWidth(S,0);

int_T iOutput;

/*

* Set index and increment for input signal, upper limit, and lower limit

* parameters so that each gives scalar expansion if needed.

*/

int_T uIdx = 0;

int_T uInc = (ssGetInputPortWidth(S,0) > 1);

const real_T *upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

int_T upperLimitInc = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);

const real_T *lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

int_T lowerLimitInc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);

UNUSED_ARG(tid); /* not used in single tasking mode */

if (ssGetNumNonsampledZCs(S) == 0) {

/*

* This block is being used with a fixed-step solver or it has

* a noncontinuous sample time, so we always saturate.

*/

for (iOutput = 0; iOutput < numOutput; iOutput++) {

if (*uPtrs[uIdx] >= *upperLimit) {

*y++ = *upperLimit;

} else if (*uPtrs[uIdx] > *lowerLimit) {

*y++ = *uPtrs[uIdx];

} else {

*y++ = *lowerLimit;

}

7-94

S-Function Examples

upperLimit += upperLimitInc;

lowerLimit += lowerLimitInc;

uIdx += uInc;

}

} else {

/*

* This block is being used with a variable-step solver.

*/

int_T *mode = ssGetModeVector(S);

/*

* Specify indices for each equation.

*/

enum { UpperLimitEquation, NonLimitEquation, LowerLimitEquation };

/*

* Update the Mode Vector ONLY at the beginning of a MajorTimeStep

*/

if (ssIsMajorTimeStep(S)) {

/*

* Specify the mode, ie the valid equation for each output scalar.

*/

for (iOutput = 0; iOutput < numOutput; iOutput++) {

if (*uPtrs[uIdx] > *upperLimit) {

/*

* Upper limit eq is valid.

*/

mode[iOutput] = UpperLimitEquation;

} else if (*uPtrs[uIdx] < *lowerLimit) {

/*

* Lower limit eq is valid.

*/

mode[iOutput] = LowerLimitEquation;

} else {

/*

* Nonlimit eq is valid.

*/

mode[iOutput] = NonLimitEquation;

}

7-95

7 Implementing Block Features

/*

* Adjust indices to give scalar expansion if needed.

*/

uIdx += uInc;

upperLimit += upperLimitInc;

lowerLimit += lowerLimitInc;

}

/*

* Reset index to input and limits.

*/

uIdx = 0;

upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

} /* end IsMajorTimeStep */

/*

* For both MinorTimeSteps and MajorTimeSteps calculate each scalar

* output using the equation specified by the mode vector.

*/

for (iOutput = 0; iOutput < numOutput; iOutput++) {

if (mode[iOutput] == UpperLimitEquation) {

/*

* Upper limit eq.

*/

*y++ = *upperLimit;

} else if (mode[iOutput] == LowerLimitEquation) {

/*

* Lower limit eq.

*/

*y++ = *lowerLimit;

} else {

/*

* Nonlimit eq.

*/

*y++ = *uPtrs[uIdx];

}

/*

7-96

S-Function Examples

* Adjust indices to give scalar expansion if needed.

*/

uIdx += uInc;

upperLimit += upperLimitInc;

lowerLimit += lowerLimitInc;

}

}

} /* end mdlOutputs */

The mdlZeroCrossings method determines if a zero crossing occurred
between the previous and current time step. Here, a pointer to the input
signal is obtained using ssGetInputPortRealSignalPtrs. A simple test of the
difference between this signal’s value and the value of the upper and lower
saturation limits is used as the nonsampled zero crossing mode vector values.
A zero crossing is detected if any element of the nonsampled zero crossings
work vector switches from negative to positive, or positive to negative. In the
event of a zero crossing, the simulation modifies the step size and recalculates
the outputs to try to locate the exact zero crossing.

#define MDL_ZERO_CROSSINGS

#if defined(MDL_ZERO_CROSSINGS) && (defined(MATLAB_MEX_FILE) || defined(NRT))

/* Function: mdlZeroCrossings ===

* Abstract:

* This will only be called if the number of nonsampled zero crossings is

* greater than 0 which means this block has a continuous sample time and the

* model is using a variable-step solver.

*

* Calculate zero crossing (ZC) signals that help the solver find the

* exact instants at which equation switches occur:

*

* if UpperLimit < u then use (1)

* if LowerLimit <= u <= UpperLimit then use (2)

* if u < LowerLimit then use (3)

*

* The key words are help find. There is no choice of a function that will

* direct the solver to the exact instant of the change. The solver will

* track the zero crossing signal and do a bisection style search for the

* exact instant of equation switch.

*

7-97

7 Implementing Block Features

* There is generally one ZC signal for each pair of signals that can

* switch. The three equations above would break into two pairs (1)&(2)

* and (2)&(3). The possibility of a "long jump" from (1) to (3) does

* not need to be handled as a separate case. It is implicitly handled.

*

* When ZCs are calculated, the value is normally used twice. When it is

* first calculated, it is used as the end of the current time step. Later,

* it will be used as the beginning of the following step.

*

* The sign of the ZC signal always indicates an equation from the pair. For

* S-functions, which equation is associated with a positive ZC and which is

* associated with a negative ZC doesn't really matter. If the ZC is positive

* at the beginning and at the end of the time step, this implies that the

* "positive" equation was valid throughout the time step. Likewise, if the

* ZC is negative at the beginning and at the end of the time step, this

* implies that the "negative" equation was valid throughout the time step.

* Like any other nonlinear solver, this is not foolproof, but it is an

* excellent indicator. If the ZC has a different sign at the beginning and

* at the end of the time step, then a equation switch definitely occurred

* during the time step.

*

* Ideally, the ZC signal gives an estimate of when an equation switch

* occurred. For example, if the ZC signal is -2 at the beginning and +6 at

* the end, then this suggests that the switch occurred

* 25% = 100%*(-2)/(-2-(+6)) of the way into the time step. It will almost

* never be true that 25% is perfectly correct. There is no perfect choice

* for a ZC signal, but there are some good rules. First, choose the ZC

* signal to be continuous. Second, choose the ZC signal to give a monotonic

* measure of the "distance" to a signal switch; strictly monotonic is ideal.

*/

static void mdlZeroCrossings(SimStruct *S)

{

int_T iOutput;

int_T numOutput = ssGetOutputPortWidth(S,0);

real_T *zcSignals = ssGetNonsampledZCs(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/*

* Set index and increment for the input signal, upper limit, and lower

* limit parameters so that each gives scalar expansion if needed.

7-98

S-Function Examples

*/

int_T uIdx = 0;

int_T uInc = (ssGetInputPortWidth(S,0) > 1);

real_T *upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

int_T upperLimitInc = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);

real_T *lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

int_T lowerLimitInc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);

/*

* For each output scalar, give the solver a measure of "how close things

* are" to an equation switch.

*/

for (iOutput = 0; iOutput < numOutput; iOutput++) {

/* The switch from eq (1) to eq (2)

*

* if UpperLimit < u then use (1)

* if LowerLimit <= u <= UpperLimit then use (2)

*

* is related to how close u is to UpperLimit. A ZC choice

* that is continuous, strictly monotonic, and is

* u - UpperLimit

* or it is negative.

*/

zcSignals[2*iOutput] = *uPtrs[uIdx] - *upperLimit;

/* The switch from eq (2) to eq (3)

*

* if LowerLimit <= u <= UpperLimit then use (2)

* if u < LowerLimit then use (3)

*

* is related to how close u is to LowerLimit. A ZC choice

* that is continuous, strictly monotonic, and is

* u - LowerLimit.

*/

zcSignals[2*iOutput+1] = *uPtrs[uIdx] - *lowerLimit;

/*

* Adjust indices to give scalar expansion if needed.

*/

7-99

7 Implementing Block Features

uIdx += uInc;

upperLimit += upperLimitInc;

lowerLimit += lowerLimitInc;

}

}

#endif /* end mdlZeroCrossings */

All S-functions must contain an mdlTerminate function. In this example,
the function is empty.

/* Function: mdlTerminate ===

* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

}

The trailer of this S-function must include the files necessary for simulation
or code generation, as follows.

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Note The mdlOutputs and mdlTerminate functions
both use the macro UNUSED_ARG. This macro is defined
inmatlabroot/simulink/include/simstruc_types.h and is used to indicate
that one of the input arguments to these callbacks is required even though it
is not used in these callbacks. The macro UNUSED_ARG accepts only a single
input argument so must be called once for each callback input argument that
is not used in the callback.

7-100

S-Function Examples

Example of a Time-Varying Continuous Transfer
Function
The S-function matlabroot/simulink/src/stvctf.c
is an example of a time-varying continuous transfer
function. This S-function is used in the Simulink model
matlabroot/toolbox/simulink/simdemos/simfeatures/sfcndemo_stvctf.mdl.
It demonstrates how to work with the solvers so that the simulation
maintains consistency, which means that the block maintains smooth
and consistent signals for the integrators although the equations
that are being integrated are changing.

matlabroot/simulink/src/stvctf.c
The beginning of each S-function must include #define statements for
the S-function’s name and level, along with a #include statement for the
simstruc.h header. Following these statements, the S-function can include
or define any other necessary headers, data, etc. This example defines
parameters for the transfer function’z numerator and denominator, which are
entered into the S-function’s dialog. Note, the comments at the beginning of
this S-function provide additional information on the purpose of the work
vectors in this example.

/*

* File : stvctf.c

* Abstract:

* Time Varying Continuous Transfer Function block

*

* This S-function implements a continuous time transfer function

* whose transfer function polynomials are passed in via the input

* vector. This is useful for continuous time adaptive control

* applications.

*

* This S-function is also an example of how to use banks to avoid

* problems with computing derivatives when a continuous output has

* discontinuities. The consistency checker can be used to verify that

* your S-function is correct with respect to always maintaining smooth

* and consistent signals for the integrators. By consistent we mean that

* two mdlOutputs calls at major time t and minor time t are always the

* same. The consistency checker is enabled on the diagnostics page of the

* Configuraion parameters dialog box. The update method of this S-function

7-101

7 Implementing Block Features

* modifies the coefficients of the transfer function, which cause the

* output to "jump." To have the simulation work properly, we need to let

* the solver know of these discontinuities by setting

* ssSetSolverNeedsReset and then we need to use multiple banks of

* coefficients so the coefficients used in the major time step output

* and the minor time step outputs are the same. In the simulation loop

* we have:

* Loop:

* o Output in major time step at time t

* o Update in major time step at time t

* o Integrate (minor time step):

* o Consistency check: recompute outputs at time t and compare

* with current outputs.

* o Derivatives at time t

* o One or more Output,Derivative evaluations at time t+k

* where k <= step_size to be taken.

* o Compute state, x

* o t = t + step_size

* End_Integrate

* End_Loop

* Another purpose of the consistency checker is to verify that when

* the solver needs to try a smaller step_size, the recomputing of

* the output and derivatives at time t doesn't change. Step size

* reduction occurs when tolerances aren't met for the current step size.

* The ideal ordering would be to update after integrate. To achieve

* this we have two banks of coefficients. And the use of the new

* coefficients, which were computed in update, is delayed until after

* the integrate phase is complete.

*

* This block has multiple sample times and will not work correctly

* in a multitasking environment. It is designed to be used in

* a single tasking (or variable step) simulation environment.

* Because this block accesses the input signal in both tasks,

* it cannot specify the sample times of the input and output ports

* (SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED).

*

* See simulink/src/sfuntmpl_doc.c.

*

* Copyright 1990-2005 The MathWorks, Inc.

*/

7-102

S-Function Examples

#define S_FUNCTION_NAME stvctf

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/*

* Defines for easy access to the numerator and denominator polynomials

* parameters

*/

#define NUM(S) ssGetSFcnParam(S, 0)

#define DEN(S) ssGetSFcnParam(S, 1)

#define TS(S) ssGetSFcnParam(S, 2)

#define NPARAMS 3

This S-function next implements the mdlCheckParameters method to
check the validity of the S-function dialog parameters. Since this is an
optional method, it must be proceeded by a #define statement. The #if
defined statement then checks that this function is being compiled as a
MEX-file, instead of for use with Real-Time Workshop. The body of the
function performs basic checks to ensure the user entered real vectors for the
numerator and denominator, and that the denominator is of a higher order
than the numerator. If the parameter check fails, the S-function errors out.

#define MDL_CHECK_PARAMETERS

#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

/* Function: mdlCheckParameters ===

* Abstract:

* Validate our parameters to verify:

* o The numerator must be of a lower order than the denominator.

* o The sample time must be a real positive nonzero value.

*/

static void mdlCheckParameters(SimStruct *S)

{

int_T i;

for (i = 0; i < NPARAMS; i++) {

real_T *pr;

int_T el;

int_T nEls;

7-103

7 Implementing Block Features

if (mxIsEmpty(ssGetSFcnParam(S,i)) ||

mxIsSparse(ssGetSFcnParam(S,i)) ||

mxIsComplex(ssGetSFcnParam(S,i)) ||

!mxIsNumeric(ssGetSFcnParam(S,i))) {

ssSetErrorStatus(S,"Parameters must be real finite vectors");

return;

}

pr = mxGetPr(ssGetSFcnParam(S,i));

nEls = mxGetNumberOfElements(ssGetSFcnParam(S,i));

for (el = 0; el < nEls; el++) {

if (!mxIsFinite(pr[el])) {

ssSetErrorStatus(S,"Parameters must be real finite vectors");

return;

}

}

}

if (mxGetNumberOfElements(NUM(S)) > mxGetNumberOfElements(DEN(S)) &&

mxGetNumberOfElements(DEN(S)) > 0 && *mxGetPr(DEN(S)) != 0.0) {

ssSetErrorStatus(S,"The denominator must be of higher order than "

"the numerator, nonempty and with first "

"element nonzero");

return;

}

/* xxx verify finite */

if (mxGetNumberOfElements(TS(S)) != 1 || mxGetPr(TS(S))[0] <= 0.0) {

ssSetErrorStatus(S,"Invalid sample time specified");

return;

}

}

#endif /* MDL_CHECK_PARAMETERS */

The required S-function method mdlInitializeSizes then sets up the
following S-function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to three, as defined previously in the variable NPARAMS.

7-104

S-Function Examples

• If this method is compiled as a MEX-file, ssGetSFcnParamsCount determines
how many parameters the user actually entered into the S-function dialog.
If the number of user-specified parameters matches the number returned
by ssGetNumSFcnParams, the method calls mdlCheckParameters to check the
validity of the user-entered data. Otherwise, the S-function errors out.

• If the parameter check passes, the S-function specifies the number
of continuous and discrete states using ssSetNumContStates and
ssSetNumDiscStates, respectively. In this example, there are no discrete
states. The number of continuous states is set based on the number of
coefficients in the transfer function’s denominator.

• Next, ssSetNumInputPorts specifies that the S-function has a single input
port whose width is set by ssSetInputPortWidth to be two times the length
of the denominator plus one. The input port’s sample time is then set to
the value provided by the third S-function dialog parameter and indicates
the rate at which the transfer function will be modified. The input port’s
offset time is set to zero. Note that the input port is also set to have direct
feedthrough by passing a value of 1 to ssSetInputPortDirectFeedThrough.

• ssSetNumOutputPorts specifies that the S-function has a single output port.
The width of this output port is set to one using ssSetOutputPortWidth.
ssSetOutputPortSampleTime specifies that the output port has a continuous
sample time and ssSetOutputPortOffsetTime sets the offset time to zero.

• ssSetNumSampleTimes then specifies that there are two sample times, which
will be configured later in the mdlInitializeSampleTimes function.

• A value of four times the number of denominator coefficients is passed
to ssSetNumRWork to set the length of the floating-point work vector.
ssSetNumIWork then sets the length of the integer work vector to two. The
RWork vectors is used to storetwo banks of transfer function coefficients,
while the IWork vector is used to indicate which bank in the RWork vector
is currently in use. The other work vectors are initialized with lengths of
zero to indicate that these work vectors are not used by this S-function.
Note that these lines could be omitted since zero is the default value for
all of these macros. For clarity, it is preferable to explicitly set the number
of work vectors.

• Lastly, any applicable options are set using ssSetOptions. In this case,
SS_OPTION_EXCEPTION_FREE_CODE stipulates that the code is exception
free.

7-105

7 Implementing Block Features

The mdlInitializeSizes function for this example is shown below.

/* Function: mdlInitializeSizes ===

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block's characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

int_T nContStates;

int_T nCoeffs;

/* See sfuntmpl_doc.c for more details on the macros below. */

ssSetNumSFcnParams(S, NPARAMS); /* Number of expected parameters. */

#if defined(MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

mdlCheckParameters(S);

if (ssGetErrorStatus(S) != NULL) {

return;

}

} else {

return; /* Parameter mismatch will be reported by Simulink. */

}

#endif

/*

* Define the characteristics of the block:

*

* Number of continuous states: length of denominator - 1

* Inputs port width 2 * (NumContStates+1) + 1

* Output port width 1

* DirectFeedThrough: 0 (Although this should be computed.

* We'll assume coefficients entered

* are strictly proper).

* Number of sample times: 2 (continuous and discrete)

* Number of Real work elements: 4*NumCoeffs

* (Two banks for num and den coeff's:

* NumBank0Coeffs

7-106

S-Function Examples

* DenBank0Coeffs

* NumBank1Coeffs

* DenBank1Coeffs)

* Number of Integer work elements: 2 (indicator of active bank 0 or 1

* and flag to indicate when banks

* have been updated).

*

* The number of inputs arises from the following:

* o 1 input (u)

* o the numerator and denominator polynomials each have NumContStates+1

* coefficients

*/

nCoeffs = mxGetNumberOfElements(DEN(S));

nContStates = nCoeffs - 1;

ssSetNumContStates(S, nContStates);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 1 + (2*nCoeffs));

ssSetInputPortDirectFeedThrough(S, 0, 0);

ssSetInputPortSampleTime(S, 0, mxGetPr(TS(S))[0]);

ssSetInputPortOffsetTime(S, 0, 0);

if (!ssSetNumOutputPorts(S,1)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetOutputPortSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOutputPortOffsetTime(S, 0, 0);

ssSetNumSampleTimes(S, 2);

ssSetNumRWork(S, 4 * nCoeffs);

ssSetNumIWork(S, 2);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE));

7-107

7 Implementing Block Features

} /* end mdlInitializeSizes */

The required S-function method mdlInitializeSampleTimes specifies the
S-function’s sample rates. The first call to ssSetSampleTime specifies that the
first sample rate is continuous, with the subsequent call to ssSetOffsetTime
setting the offset to zero. The second call to this pair of macros sets the second
sample time to the value of the third S-function parameter with an offset of
zero. The call to ssSetModelReferenceSampleTimeDefaultInheritance tells
the solver to use the default rule to determine if submodels containing this
S-function can inherit their sample times from the parent model.

/* Function: mdlInitializeSampleTimes ===

* Abstract:

* This function is used to specify the sample time(s) for the

* S-function. This S-function has two sample times. The

* first, a continous sample time, is used for the input to the

* transfer function, u. The second, a discrete sample time

* provided by the user, defines the rate at which the transfer

* function coefficients are updated.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

/*

* the first sample time, continuous

*/

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

/*

* the second, discrete sample time, is user provided

*/

ssSetSampleTime(S, 1, mxGetPr(TS(S))[0]);

ssSetOffsetTime(S, 1, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

} /* end mdlInitializeSampleTimes */

7-108

S-Function Examples

The optional S-function method mdlInitializeConditions initializes the
continuous state vector and the initial numerator and denominator vectors.
The #define statement before this method is required or Simulink will not
call this function. The function initializes the continuous states to zero. The
numerator and denominator coefficients are initialized from the first two
S-function parameters, normalized by the first denominator coefficient. The
value stored in the IWork vector is set to zero, to indicate that the first bank
of numerator and denominator coefficients stored in the RWork vector is
currently in use.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

* Abstract:

* Initalize the states, numerator and denominator coefficients.

*/

static void mdlInitializeConditions(SimStruct *S)

{

int_T i;

int_T nContStates = ssGetNumContStates(S);

real_T *x0 = ssGetContStates(S);

int_T nCoeffs = nContStates + 1;

real_T *numBank0 = ssGetRWork(S);

real_T *denBank0 = numBank0 + nCoeffs;

int_T *activeBank = ssGetIWork(S);

/*

* The continuous states are all initialized to zero.

*/

for (i = 0; i < nContStates; i++) {

x0[i] = 0.0;

numBank0[i] = 0.0;

denBank0[i] = 0.0;

}

numBank0[nContStates] = 0.0;

denBank0[nContStates] = 0.0;

/*

* Set up the initial numerator and denominator.

*/

{

7-109

7 Implementing Block Features

const real_T *numParam = mxGetPr(NUM(S));

int numParamLen = mxGetNumberOfElements(NUM(S));

const real_T *denParam = mxGetPr(DEN(S));

int denParamLen = mxGetNumberOfElements(DEN(S));

real_T den0 = denParam[0];

for (i = 0; i < denParamLen; i++) {

denBank0[i] = denParam[i] / den0;

}

for (i = 0; i < numParamLen; i++) {

numBank0[i] = numParam[i] / den0;

}

}

/*

* Normalize if this transfer function has direct feedthrough.

*/

for (i = 1; i < nCoeffs; i++) {

numBank0[i] -= denBank0[i]*numBank0[0];

}

/*

* Indicate bank0 is active (i.e. bank1 is oldest).

*/

*activeBank = 0;

} /* end mdlInitializeConditions */

The mdlOutputs function calculates the S-function output signals when the
S-function is simulating in a continuous task, i.e., ssIsContinuousTask is
true. If the simulation is also at a major time step, mdlOutputs checks if the
numerator and denominator coefficients need to be updated, as indicated by
a switch in the active bank stored in the IWork vector. At both major and
minor time steps, the output is calculated using the numerator coefficients
stored in the active bank.

/* Function: mdlOutputs ===

* Abstract:

7-110

S-Function Examples

* The outputs for this block are computed by using a controllable state-

* space representation of the transfer function.

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

if (ssIsContinuousTask(S,tid)) {

int i;

real_T *num;

int nContStates = ssGetNumContStates(S);

real_T *x = ssGetContStates(S);

int_T nCoeffs = nContStates + 1;

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

real_T *y = ssGetOutputPortRealSignal(S,0);

int_T *activeBank = ssGetIWork(S);

/*

* Switch banks because we've updated them in mdlUpdate and we're no

* longer in a minor time step.

*/

if (ssIsMajorTimeStep(S)) {

int_T *banksUpdated = ssGetIWork(S) + 1;

if (*banksUpdated) {

*activeBank = !(*activeBank);

*banksUpdated = 0;

/*

* Need to tell the solvers that the derivatives are no

* longer valid.

*/

ssSetSolverNeedsReset(S);

}

}

num = ssGetRWork(S) + (*activeBank) * (2*nCoeffs);

/*

* The continuous system is evaluated using a controllable state space

* representation of the transfer function. This implies that the

* output of the system is equal to:

*

* y(t) = Cx(t) + Du(t)

* = [b1 b2 ... bn]x(t) + b0u(t)

7-111

7 Implementing Block Features

*

* where b0, b1, b2, ... are the coefficients of the numerator

* polynomial:

*

* B(s) = b0 s^n + b1 s^n-1 + b2 s^n-2 + ... + bn-1 s + bn

*/

*y = *num++ * (*uPtrs[0]);

for (i = 0; i < nContStates; i++) {

*y += *num++ * *x++;

}

}

} /* end mdlOutputs */

The mdlUpdate function is used to update the transfer function coefficients
at every major time step. Note, in this example there are no discrete
states to update. Since this is an optional method, it must be proceeded
by a #define statement. A pointer to the input signal is obtained using
ssGetInputPortRealSignalPtrs. The input signal’s values are used to update
the transfer function coefficients. The new coefficients are stored in the bank
of the RWork vector that is currently inactive. When the mdlOutputs function
is later called at this major time step, it will update the active bank to be this
updated bank of coefficients.

#define MDL_UPDATE

/* Function: mdlUpdate ==

* Abstract:

* Every time through the simulation loop, update the

* transfer function coefficients. Here we update the oldest bank.

*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

if (ssIsSampleHit(S, 1, tid)) {

int_T i;

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

int_T uIdx = 1;/*1st coeff is after signal input*/

int_T nContStates = ssGetNumContStates(S);

int_T nCoeffs = nContStates + 1;

int_T bankToUpdate = !ssGetIWork(S)[0];

real_T *num = ssGetRWork(S)+bankToUpdate*2*nCoeffs;

7-112

S-Function Examples

real_T *den = num + nCoeffs;

real_T den0;

int_T allZero;

/*

* Get the first denominator coefficient. It will be used

* for normalizing the numerator and denominator coefficients.

*

* If all inputs are zero, we probably could have unconnected

* inputs, so use the parameter as the first denominator coefficient.

*/

den0 = *uPtrs[uIdx+nCoeffs];

if (den0 == 0.0) {

den0 = mxGetPr(DEN(S))[0];

}

/*

* Grab the numerator.

*/

allZero = 1;

for (i = 0; (i < nCoeffs) && allZero; i++) {

allZero &= *uPtrs[uIdx+i] == 0.0;

}

if (allZero) { /* if numerator is all zero */

const real_T *numParam = mxGetPr(NUM(S));

int_T numParamLen = mxGetNumberOfElements(NUM(S));

/*

* Move the input to the denominator input and

* get the denominator from the input parameter.

*/

uIdx += nCoeffs;

num += nCoeffs - numParamLen;

for (i = 0; i < numParamLen; i++) {

*num++ = *numParam++ / den0;

}

} else {

for (i = 0; i < nCoeffs; i++) {

7-113

7 Implementing Block Features

*num++ = *uPtrs[uIdx++] / den0;

}

}

/*

* Grab the denominator.

*/

allZero = 1;

for (i = 0; (i < nCoeffs) && allZero; i++) {

allZero &= *uPtrs[uIdx+i] == 0.0;

}

if (allZero) { /* If denominator is all zero. */

const real_T *denParam = mxGetPr(DEN(S));

int_T denParamLen = mxGetNumberOfElements(DEN(S));

den0 = denParam[0];

for (i = 0; i < denParamLen; i++) {

*den++ = *denParam++ / den0;

}

} else {

for (i = 0; i < nCoeffs; i++) {

*den++ = *uPtrs[uIdx++] / den0;

}

}

/*

* Normalize if this transfer function has direct feedthrough.

*/

num = ssGetRWork(S) + bankToUpdate*2*nCoeffs;

den = num + nCoeffs;

for (i = 1; i < nCoeffs; i++) {

num[i] -= den[i]*num[0];

}

/*

* Indicate oldest bank has been updated.

*/

ssGetIWork(S)[1] = 1;

}

7-114

S-Function Examples

} /* end mdlUpdate */

The mdlDerivatives function then calculates the continuous state
derivatives. The coefficients from the active bank are used to solve a
controllable state-space representation of the transfer function.

#define MDL_DERIVATIVES

/* Function: mdlDerivatives ===

* Abstract:

* The derivatives for this block are computed by using a controllable

* state-space representation of the transfer function.

*/

static void mdlDerivatives(SimStruct *S)

{

int_T i;

int_T nContStates = ssGetNumContStates(S);

real_T *x = ssGetContStates(S);

real_T *dx = ssGetdX(S);

int_T nCoeffs = nContStates + 1;

int_T activeBank = ssGetIWork(S)[0];

const real_T *num = ssGetRWork(S) + activeBank*(2*nCoeffs);

const real_T *den = num + nCoeffs;

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/*

* The continuous system is evaluated using a controllable state-space

* representation of the transfer function. This implies that the

* next continuous states are computed using:

*

* dx = Ax(t) + Bu(t)

* = [-a1 -a2 ... -an] [x1(t)] + [u(t)]

* [1 0 ... 0] [x2(t)] + [0]

* [0 1 ... 0] [x3(t)] + [0]

* [.] . + .

* [.] . + .

* [.] . + .

* [0 0 ... 1 0] [xn(t)] + [0]

*

* where a1, a2, ... are the coefficients of the numerator polynomial:

7-115

7 Implementing Block Features

*

* A(s) = s^n + a1 s^n-1 + a2 s^n-2 + ... + an-1 s + an

*/

dx[0] = -den[1] * x[0] + *uPtrs[0];

for (i = 1; i < nContStates; i++) {

dx[i] = x[i-1];

dx[0] -= den[i+1] * x[i];

}

} /* end mdlDerivatives */

All S-functions must contain an mdlTerminate function. In this example,
the function is empty.

/* Function: mdlTerminate ===

* Abstract:

* Called when the simulation is terminated.

* For this block, there are no end of simulation tasks.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

} /* end mdlTerminate */

The trailer of this S-function must include the files necessary for simulation
or code generation, as follows.

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

7-116

S-Function Examples

Note The mdlTerminate function uses the macro UNUSED_ARG. This macro
is defined in matlabroot/simulink/include/simstruc_types.h and is used
to indicate that one of the input arguments to this callback is required
even though it is not used in the callback. The macro UNUSED_ARG accepts
only a single input argument so must be called once for each callback input
argument that is not used in the callback.

7-117

7 Implementing Block Features

7-118

8

S-Function Callback
Methods — Alphabetical
List

Every user-written S-function must implement a set of methods, called
callback methods or simply callbacks, that Simulink invokes when simulating
a model that contains the S-function. Some callback methods are optional.
Simulink invokes an optional callback only if the S-function defines the
callback. This section describes the purpose and syntax of all callback
methods that an S-function can implement. In each case, the documentation
for a callback method indicates whether it is required or optional.

mdlCheckParameters

Purpose Check the validity of an S-function’s parameters

Required No

C Syntax void mdlCheckParameters(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

M Syntax CheckParameters(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing an
S-Function block.

Description Verifies new parameter settings whenever parameters change or are
reevaluated during a simulation.

When a simulation is running, changes to S-function parameters can
occur at any time during the simulation loop, that is, either at the start
of a simulation step or during a simulation step. When the change
occurs during a simulation step, Simulink calls this routine twice to
handle the parameter change. The first call during the simulation step
is used to verify that the parameters are correct. After verifying the
new parameters, the simulation continues using the original parameter
values until the next simulation step, at which time the new parameter
values are used. Redundant calls are needed to maintain simulation
consistency.

8-2

mdlCheckParameters

Note You cannot access the work, state, input, output, and other
vectors in this routine. Use this routine only to validate the
parameters. Additional processing of the parameters should be done in
mdlProcessParameters.

Example This example checks the first S-function parameter to verify that it is
a real nonnegative scalar.

#define PARAM1(S) ssGetSFcnParam(S,0)

#define MDL_CHECK_PARAMETERS /* Change to #undef to remove function */

#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

static void mdlCheckParameters(SimStruct *S)

{

if (mxGetNumberOfElements(PARAM1(S)) != 1) {

ssSetErrorStatus(S,"Parameter to S-function must be a scalar");

return;

} else if (mxGetPr(PARAM1(S))[0] < 0) {

ssSetErrorStatus(S, "Parameter to S-function must be nonnegative");

return;

}

}

#endif /* MDL_CHECK_PARAMETERS */

In addition to the preceding routine, you must add a call to this method
from mdlInitializeSizes to check parameters during initialization,
because mdlCheckParameters is only called while the simulation is
running. To do this, after setting the number of parameters you expect
in your S-function by using ssSetNumSFcnParams, use this code in
mdlInitializeSizes:

8-3

mdlCheckParameters

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 1); /* Number of expected parameters */

#if defined(MATLAB_MEX_FILE)

if(ssGetNumSFcnParams(s) == ssGetSFcnParamsCount(s) {

mdlCheckParameters(S);

if(ssGetErrorStates(S) != NULL) return;

} else {

return; /* Simulink will report a mismatch error. */

}

#endif

...

}

Note The macro ssGetSFcnParamsCount returns the actual number of
parameters entered in the dialog box.

See matlabroot/simulink/src/sfun_errhdl.c for an example.

Languages Ada, C, M

See Also mdlProcessParameters, ssGetSFcnParamsCount

8-4

mdlDerivatives

Purpose Compute the S-function’s derivatives

Required No

C Syntax void mdlDerivatives(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

M Syntax Derivatives(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block

Description Simulink invokes this optional method at each time step to compute the
derivatives of the S-function’s continuous states. This method should
store the derivatives in the S-function’s state derivatives vector. This
method can use ssGetdX to get a pointer to the derivatives vector.

Each time the mdlDerivatives routine is called, it must explicitly set
the values of all derivatives. The derivative vector does not maintain
the values from the last call to this routine. The memory allocated to
the derivative vector changes during execution.

Example For an example, see matlabroot/simulink/src/csfunc.c.
A Level-2 M-file example can be found in
matlabroot/toolbox/simulink/blocks/msfcn_limintm.m.

Languages Ada, C, M

See Also ssGetdx

8-5

mdlDisable

Purpose Respond to disabling of an enabled system containing this block

Required No

C Syntax void mdlDisable(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

M Syntax Disable(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

Description Simulink invokes this optional method if this block resides in an
enabled subsystem and the enabled subsystem changes from an enabled
to a disabled state at the current time step. Your S-function can use
this method to perform any actions required by the disabling of the
containing subsystem.

Languages Ada, C, M

See Also mdlEnable

8-6

mdlEnable

Purpose Respond to enabling of an enabled system containing this block

Required No

C Syntax void mdlEnable(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

M Syntax Enable(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

Description Simulink invokes this optional method if this block resides in an
enabled subsystem and the enabled subsystem changes from a disabled
to an enabled state at the current time step. Your S-function can use
this method to perform any actions required by the enabling of the
containing subsystem.

Languages Ada, C, M

See Also mdlDisable

8-7

mdlGetTimeOfNextVarHit

Purpose Specify time of the next sample time hit

Required No

C Syntax void mdlGetTimeOfNextVarHit(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

Description Simulink invokes this optional method at every major integration step
to get the time of the next sample time hit. This method should set the
time of next hit, using ssSetTNext. The time of the next hit must be
greater than the current simulation time as returned by ssGetT. The
S-function must implement this method if it operates at a discrete,
variable-step sample time.

For Level-2 M-file S-functions, use a sample time of -2 to
specify a variable sample time. The S-function’s output method
should then update the NextTimeHit property of the instance
of the Simulink.MSFcnRunTimeBlock class representing the
S-Function block to set the time of the next sample time hit. See
matlabroot/toolbox/simulink/blocks/msfcn_vs.m for an example.

For Level-1 M-file S-functions, a flag of 4 is passed to the S-function
when the next sample time hit needs to be calculated.

Note The time of the next hit can be a function of the input signals.

Example static void mdlGetTimeOfNextVarHit(SimStruct *S)
{

time_T offset = getOffset();
time_T timeOfNextHit = ssGetT(S) + offset;
ssSetTNext(S, timeOfNextHit);

}

8-8

mdlGetTimeOfNextVarHit

Languages C, M

See Also mdlInitializeSampleTimes, ssGetT, ssSetTNext

8-9

mdlInitializeConditions

Purpose Initialize the state vectors of this S-function

Required No

C Syntax void mdlInitializeConditions(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

M Syntax InitializeConditions(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

Description Simulink invokes this optional method at the beginning of a simulation.
It should initialize the continuous and discrete states, if any, of this
S-Function block. Use ssGetContStates and/or ssGetDiscStates to
get the states. This method can also perform any other initialization
activities that this S-function requires.

If this S-function resides in an enabled subsystem configured to reset
states, Simulink also calls this method when the enabled subsystem
restarts execution. This method can use the ssIsFirstInitCond macro
to determine whether it is being called for the first time.

Example This example is an S-function with both continuous and discrete states.
It initializes both sets of states to 1.0.

#define MDL_INITIALIZE_CONDITIONS /*Change to #undef to remove */

/*function*/

#if defined(MDL_INITIALIZE_CONDITIONS)

static void mdlInitializeConditions(SimStruct *S)

8-10

mdlInitializeConditions

{

int i;

real_T *xcont = ssGetContStates(S);

int_T nCStates = ssGetNumContStates(S);

real_T *xdisc = ssGetRealDiscStates(S);

int_T nDStates = ssGetNumDiscStates(S);

for (i = 0; i < nCStates; i++) {

*xcont++ = 1.0;

}

for (i = 0; i < nDStates; i++) {

*xdisc++ = 1.0;

}

}

#endif /* MDL_INITIALIZE_CONDITIONS */

For another example that initializes only the continuous states, see
matlabroot/simulink/src/resetint.c.

Languages C, C++, M

See Also mdlStart, ssIsFirstInitCond, ssGetContStates, ssGetDiscStates

8-11

mdlInitializeSampleTimes

Purpose Specify the sample rates at which this S-function operates

Required Yes

C Syntax void mdlInitializeSampleTimes(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

Description This method should specify the sample time and offset time for each
sample rate at which this S-function operates via the following paired
macros

ssSetSampleTime(S, sampleTimeIndex, sample_time)
ssSetOffsetTime(S, offsetTimeIndex, offset_time)

where sampleTimeIndex runs from 0 to one less than the
number of sample times specified in mdlInitializeSizes via
ssSetNumSampleTimes.

If the S-function operates at one or more sample rates, this method
can specify any of the following sample time and offset values for a
given sample time:

• [CONTINUOUS_SAMPLE_TIME, 0.0]

• [CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

• [discrete_sample_period, offset]

• [VARIABLE_SAMPLE_TIME, 0.0]

The uppercase values are macros defined in simstruc_types.h.

If the S-function operates at one rate, this method can alternatively set
the sample time to one of the following sample/offset time pairs.

• [INHERITED_SAMPLE_TIME, 0.0]

8-12

mdlInitializeSampleTimes

• [INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

If the number of sample times is 0, Simulink assumes that the
S-function inherits its sample time from the block to which it is
connected, i.e., that the sample time is

[INHERITED_SAMPLE_TIME, 0.0]

This method can therefore return without doing anything.

Use the following guidelines when specifying sample times.

• A continuous function that changes during minor integration steps
should set the sample time to

[CONTINUOUS_SAMPLE_TIME, 0.0]

• A continuous function that does not change during minor integration
steps should set the sample time to

[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

• A discrete function that changes at a specified rate should set the
sample time to

[discrete_sample_period, offset]

where

discrete_sample_period > 0.0

and

0.0 <= offset < discrete_sample_period

• A discrete function that changes at a variable rate should set the
sample time to

[VARIABLE_SAMPLE_TIME, 0.0]

8-13

mdlInitializeSampleTimes

Simulink invokes the mdlGetTimeOfNextVarHit function to get the
time of the next sample hit for the variable-step discrete task.

Note that VARIABLE_SAMPLE_TIME requires a variable-step solver.

• To operate correctly in a triggered subsystem or a periodic system, a
discrete S-function should

- Specify a single sample time set to

[INHERITED_SAMPLE_TIME, 0.0]

- Use ssSetOptions to set the
SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME
simulation option in mdlInitializeSizes

- Verify that it was assigned a discrete or triggered sample time in
mdlSetWorkWidths:

if (ssGetSampleTime(S, 0) == CONTINUOUS_SAMPLE_TIME) {
ssSetErrorStatus(S,

"This block cannot be assigned a continuous sample
time");

}

After propagating sample times throughout the block diagram,
Simulink assigns the sample time

[INHERITED_SAMPLE_TIME, INHERITED_SAMPLE_TIME]

to discrete blocks residing in triggered subsystems.

If this function has no intrinsic sample time, it should set its sample
time to inherited according to the following guidelines:

• A function that changes as its input changes, even during minor
integration steps, should set its sample time to

[INHERITED_SAMPLE_TIME, 0.0]

8-14

mdlInitializeSampleTimes

A function that changes as its input changes, but doesn’t change
during minor integration steps (i.e., is held during minor steps)
should set its sample time to

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

The S-function should use the ssIsSampleHit or ssIsContinuousTask
macros to check for a sample hit during execution (in mdlOutputs or
mdlUpdate). For example, if the block’s first sample time is continuous,
the function can use the following code fragment to check for a sample
hit.

if (ssIsContinuousTask(S,tid)) {
}

Note The function receives incorrect results if it uses
ssIsSampleHit(S,0,tid).

If the function wants to determine whether the third (discrete) task has
a hit, it can use the following code fragment.

if (ssIsSampleHit(S,2,tid) {
}

Languages C

See Also mdlSetInputPortSampleTime, mdlSetOutputPortSampleTime

8-15

mdlInitializeSizes

Purpose Specify the number of inputs, outputs, states, parameters, and other
characteristics of the S-function

Required Yes

C Syntax void mdlInitializeSizes(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

M Syntax setup(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

Description This is the first of the S-function’s callback methods that Simulink calls.
This method should perform the following tasks:

• Specify the number of parameters that this S-function supports,
using ssSetNumSFcnParams.

Use ssSetSFcnParamTunable(S,paramIdx, 0) when a parameter
cannot change during simulation, where paramIdx starts at 0. When
a parameter has been specified as not tunable, Simulink issues an
error during simulation (or the Real-Time Workshop external mode)
if an attempt is made to change the parameter.

• Specify the number of states that this function has, using
ssSetNumContStates and ssSetNumDiscStates.

• Configure the block’s input ports.

This entails the following tasks:

8-16

mdlInitializeSizes

- Specify the number of input ports that this S-function has, using
ssSetNumInputPorts.

- Specify the dimensions of the input ports.

See ssSetInputPortDimensionInfo for more information.

- For each input port, specify whether it has direct feedthrough,
using ssSetInputPortDirectFeedThrough.

A port has direct feedthrough if the input is used in either the
mdlOutputs or mdlGetTimeOfNextVarHit function. The direct
feedthrough flag for each input port can be set to either 1=yes
or 0=no. It should be set to 1 if the input, u, is used in the
mdlOutputs or mdlGetTimeOfNextVarHit routine. Setting the
direct feedthrough flag to 0 tells Simulink that u is not used
in either of these S-function routines. Violating this leads to
unpredictable results.

• Configure the block’s output ports.

This entails the following tasks:

- Specify the number of output ports that the block has, using
ssSetNumOutputPorts.

- Specify the dimensions of the output ports.

See mdlSetOutputPortDimensionInfo for more information.

If your S-function outputs are discrete (for example, the
outputs only take specific values such as 0, 1, and 2), specify
SS_OPTION_DISCRETE_VALUED_OUTPUT.

• Set the number of sample times (i.e., sample rates) at which the
block operates.

There are two ways of specifying sample times:

- Port-based sample times

- Block-based sample times

8-17

mdlInitializeSizes

See “Sample Times” on page 7-20 for a complete discussion of sample
time issues.

For multirate S-functions, the suggested approach to setting sample
times is via the port-based sample times method. When you create a
multirate S-function, you must take care to verify that, when slower
tasks are preempted, your S-function correctly manages data so as to
avoid race conditions. When port-based sample times are specified,
the block cannot inherit a constant sample time at any port.

• Set the size of the block’s work vectors, using ssSetNumRWork,
ssSetNumIWork, ssSetNumPWork, ssSetNumModes,
ssSetNumNonsampledZCs.

• Set the simulation options that this block implements, using
ssSetOptions.

All options have the form SS_OPTION_<name>. See ssSetOptions
for information on each option. The options should be bitwise OR’d
together, as in

ssSetOptions(S, (SS_OPTION_name1 | SS_OPTION_name2))

Dynamically Sized Block Features

You can set the parameters NumContStates, NumDiscStates,
NumInputs, NumOutputs, NumRWork, NumIWork, NumPWork, NumModes,
and NumNonsampledZCs to a fixed nonnegative integer or tell Simulink
to size them dynamically:

• DYNAMICALLY_SIZED -- Sets lengths of states, work vectors, and so
on to values inherited from the driving block. It sets widths to the
actual input widths, according to the scalar expansion rules unless
you use mdlSetWorkWidths to set the widths.

• 0 or positive number -- Sets lengths (or widths) to the specified
values. The default is 0.

Example static void mdlInitializeSizes(SimStruct *S)

{

8-18

mdlInitializeSizes

int_T nInputPorts = 1; /* number of input ports */

int_T nOutputPorts = 1; /* number of output ports */

int_T needsInput = 1; /* direct feed through */

int_T inputPortIdx = 0;

int_T outputPortIdx = 0;

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

/*

* If the number of expected input parameters is not

* equal to the number of parameters entered in the

* dialog box, return. Simulink will generate an error

* indicating that there is aparameter mismatch.

*/

return;

}else {

mdlCheckParameters(S);

if (ssGetErrorStatus(s) != NULL)

return;

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

/*

* Configure the input ports. First set the number of input

* ports.

*/

if (!ssSetNumInputPorts(S, nInputPorts)) return;

/*

* Set input port dimensions for each input port index

* starting at 0.

8-19

mdlInitializeSizes

*/

if(!ssSetInputPortDimensionInfo(S, inputPortIdx,

DYNAMIC_DIMENSION)) return;

/*

* Set direct feedthrough flag (1=yes, 0=no).

*/

ssSetInputPortDirectFeedThrough(S, inputPortIdx, needsInput);

/*

* Configure the output ports. First set the number of

* output ports.

*/

if (!ssSetNumOutputPorts(S, nOutputPorts)) return;

/*

* Set output port dimensions for each output port index

* starting at 0.

*/

if(!ssSetOutputPortDimensionInfo(S,outputPortIdx,

DYNAMIC_DIMENSION)) return;

/*

* Set the number of sample times. */

ssSetNumSampleTimes(S, 1);

/*

* Set size of the work vectors.

*/

ssSetNumRWork(S, 0); /* real vector */

ssSetNumIWork(S, 0); /* integer vector */

ssSetNumPWork(S, 0); /* pointer vector */

ssSetNumModes(S, 0); /* mode vector */

ssSetNumNonsampledZCs(S, 0); /* zero crossings */

ssSetOptions(S, 0);

} /* end mdlInitializeSizes */

8-20

mdlInitializeSizes

Languages Ada, C, M

8-21

mdlOutputs

Purpose Compute the signals that this block emits

Required Yes

C Syntax void mdlOutputs(SimStruct *S, int_T tid)

C
Arguments

S
SimStruct representing an S-Function block.

tid
Task ID.

M Syntax Outputs(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

Description Simulink invokes this required method at each simulation time step.
The method should compute the S-function’s outputs at the current
time step and store the results in the S-function’s output signal arrays.

The tid (task ID) argument specifies the task running when the
mdlOutputs routine is invoked. You can use this argument in the
mdlOutports routine of a multirate S-Function block to encapsulate
task-specific blocks of code (see “Multirate S-Function Blocks” on page
7-30).

For an example of an mdlOutputs routine that works with multiple input
and output ports, see matlabroot/simulink/src/sfun_multiport.c.

Languages Ada, C, C++, M

See Also ssGetOutputPortComplexSignal, ssGetOutputPortRealSignal,
ssGetOutputPortSignal

8-22

mdlProcessParameters

Purpose Process the S-function’s parameters

Required No

C Syntax void mdlProcessParameters(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

M Syntax ProcessParameters(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

Description This is an optional routine that Simulink calls after
mdlCheckParameters changes and verifies parameters. The processing
is done at the top of the simulation loop when it is safe to process the
changed parameters.

The purpose of this routine is to process newly changed parameters.
An example is to cache parameter changes in work vectors. Simulink
does not call this routine when it is used with Real-Time Workshop.
Therefore, if you use this routine in an S-function designed for use with
Real-Time Workshop, you must write your S-function so that it doesn’t
rely on this routine. To do this, you must inline your S-function by
using the Target Language Compiler. See “Real-Time Workshop Target
Language Compiler” for information on inlining S-functions.

The synopsis is

#define MDL_PROCESS_PARAMETERS /* Change to #undef to remove function */

#if defined(MDL_PROCESS_PARAMETERS) && defined(MATLAB_MEX_FILE)

static void mdlProcessParameters(SimStruct *S)

{

8-23

mdlProcessParameters

}

#endif /* MDL_PROCESS_PARAMETERS */

Example This example processes a string parameter that mdlCheckParameters
has verified to be of the form '+++' (where there could be any number
of '+' or '-' characters).

#define MDL_PROCESS_PARAMETERS /* Change to #undef to remove function */

#if defined(MDL_PROCESS_PARAMETERS) && defined(MATLAB_MEX_FILE)

static void mdlProcessParameters(SimStruct *S)

{

int_T i;

char_T *plusMinusStr;

int_T nInputPorts = ssGetNumInputPorts(S);

int_T *iwork = ssGetIWork(S);

if ((plusMinusStr=(char_T*)malloc(nInputPorts+1)) == NULL) {

ssSetErrorStatus(S,"Memory allocation error in mdlStart");

return;

}

if (mxGetString(SIGNS_PARAM(S),plusMinusStr,nInputPorts+1) != 0) {

free(plusMinusStr);

ssSetErrorStatus(S,"mxGetString error in mdlStart");

return;

}

for (i = 0; i < nInputPorts; i++) {

iwork[i] = plusMinusStr[i] == '+'? 1: -1;

}

free(plusMinusStr);

}

#endif /* MDL_PROCESS_PARAMETERS */

mdlProcessParameters is called from mdlStart to load the signs string
prior to the start of the simulation loop.

#define MDL_START
#if defined(MDL_START)

8-24

mdlProcessParameters

static void mdlStart(SimStruct *S)
{

mdlProcessParameters(S);
}
#endif /* MDL_START */

Languages Ada, C, M

See Also mdlCheckParameters

8-25

mdlProjection

Purpose Perturb the solver’s solution of a system’s states to better satisfy
time-invariant solution relationships

Required No

C Syntax void mdlProjection(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

M Syntax Projection(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

Description This method is intended for use with S-functions that model dynamic
systems whose states satisfy time-invariant relationships, such as those
resulting from mass or energy conservation or other physical laws.
Simulink invokes this method at each time step after the model’s solver
has computed the S-function’s states for that time step. Typically, slight
errors in the numerical solution of the states cause the solutions to
fail to satisfy solution invariants exactly. Your mdlProjection method
can compensate for the errors by perturbing the states so that they
more closely approximate solution invariants at the current time step.
As a result, the numerical solution adheres more closely to the ideal
solution as the simulation progresses, producing a more accurate overall
simulation of the system modeled by your S-function.

Your mdlProjection method’s perturbations of system states must fall
within the solution error tolerances specified by the model in which the
S-function is embedded. Otherwise, the perturbations may invalidate
the solver’s solution. It is up to your mdlProjection method to ensure
that the perturbations meet the error tolerances specified by the model.
See “Perturbing a System’s States Using a Solution Invariant” on page

8-26

mdlProjection

8-27 for a simple method for perturbing a system’s states. The following
articles describe more sophisticated perturbation methods that your
mdlProjection method can use.

• C.W. Gear, “Maintaining Solution Invariants in the Numerical
Solution of ODEs,” Journal on Scientific and Statistical Computing,
Vol. 7, No. 3, July 1986.

• L.F. Shampine, “Conservation Laws and the Numerical Solution of
ODEs I,” Computers and Mathematics with Applications, Vol. 12B,
pp. 1287–1296, 1986.

• L.F. Shampine, “Conservation Laws and the Numerical Solution of
ODEs II,” Computers and Mathematics with Applications, Vol. 38,
pp. 61–72, 1999.

Perturbing a System’s States Using a Solution Invariant

Here is a simple, Taylor-series-based approach to perturbing a system’s
states. Suppose your S-function models a dynamic system having

a solution invariant, g X t(,) , i.e., g is a continuous, differentiable
function of the system states, X , and time, t , whose value is constant
with time. Then

X X J J J Rn n n
T

n n
T

n≅ + −* () 1

where

• Xn is the system’s ideal state vector at the solver’s current time step

• Xn
* is the approximate state vector computed by the solver at the

current time step

• Jn is the Jacobian of the invariant function evaluated at the point in
state space specified by the approximate state vector at the current
time step:

8-27

mdlProjection

J
g
X

X tn n n= ∂
∂

(,)*

• tn is the time at the current time step

• Rn is the residual (difference) between the invariant function

evaluated at Xn and Xn
* at the current time step:

R g X t g X tn n n n n= −(,) (,)*

Note The value of g X tn n(,) is the same at each time step and is
known by definition.

Given a continuous, differentiable invariant function for the system
that your S-function models, this formula allows your S-function’s
mdlProjection method to compute a perturbation

J J J Rn
T

n n
T

n()−1

of the solver’s numerical solution, Xn
* , that more closely matches the

ideal solution, Xn , keeping the S-function’s solution from drifting from
the ideal solution as the simulation progresses.

Example

This example illustrates how the perturbation method outlined in the
previous section can keep a model’s numerical solution from drifting
from the ideal solution as a simulation progresses. Consider the
following model (open):

8-28

mdlProjection

The PredPrey block references an S-function, predprey_noproj.m, that
uses the Lotka-Volterra equations

�
�
x ax y
y cy x

= −
= − −

()
()
1
1

to model predator-prey population dynamics, where x t() is the

population density of the predators and y t() is the population density
of prey. The ideal solution to the predator-prey ODEs satisfies the
time-invariant function

x e y e dc cx a ay− − =

where a , c , and d are constants. The S-function assumes a = 1, c =
2, and d = 121.85.

The Invariant Residual block in this model computes the residual
between the invariant function evaluated along the system’s ideal
trajectory through state space and its simulated trajectory:

R d x e y en n
c cx

n
a ayn n= − − −

where xn and yn are the values computed by the model’s solver for the
predator and prey population densities, respectively, at the current
time step. Ideally, the residual should be zero throughout simulation of
the model, but simulating the model reveals that the residual actually
strays considerably from zero:

8-29

mdlProjection

Now consider the following model (open):

This model is the same as the previous model, except that its
S-function, predprey.m, includes a mdlProjection method that uses

8-30

mdlProjection

the perturbation approach outlined in “Perturbing a System’s States
Using a Solution Invariant” on page 8-27 to compensate for numerical
drift. As a result, the numerical solution more closely tracks the ideal
solution as the simulation progresses as demonstrated by the residual
signal, which remains near or at zero throughout the simulation:

Languages C, M

8-31

mdlRTW

Purpose Generate code generation data

Required No

C Syntax void mdlRTW(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

M Syntax WriteRTW(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

Description This function is called when Real-Time Workshop is generating the
model.rtw file. In this method, you can call the following functions that
add fields to the model.rtw file:

• ssWriteRTWParameters

• ssWriteRTWParamSettings

• ssWriteRTWWorkVect

• ssWriteRTWStr

• ssWriteRTWStrParam

• ssWriteRTWScalarParam

• ssWriteRTWStrVectParam

• ssWriteRTWVectParam

• ssWriteRTW2dMatParam

• ssWriteRTWMxVectParam

8-32

mdlRTW

• ssWriteRTWMx2dMatParam

Languages C, C++, M

See Also ssSetInputPortFrameData, ssSetOutputPortFrameData,
ssSetErrorStatus

8-33

mdlSetDefaultPortComplexSignals

Purpose Set the numeric types (real, complex, or inherited) of ports whose
numeric types cannot be determined from block connectivity

Required No

C Syntax void mdlSetDefaultPortComplexSignals(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

Description Simulink invokes this method if the block has ports whose numeric
types cannot be determined from connectivity. (This usually happens
when the block is unconnected or is part of a feedback loop.) This
method must set the numeric types of all ports whose numeric types
are not set.

If the block does not implement this method and at least one port is
known to be complex, Simulink sets the unknown ports to COMPLEX_YES;
otherwise, it sets the unknown ports to COMPLEX_NO.

Languages C

See Also ssSetOutputPortComplexSignal, ssSetInputPortComplexSignal

8-34

mdlSetDefaultPortDataTypes

Purpose Set the data types of ports whose data types cannot be determined from
block connectivity

Required No

C Syntax void mdlSetDefaultPortDataTypes(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

Description Simulink invokes this method if the block has ports whose data types
cannot be determined from block connectivity. (This usually happens
when the block is unconnected or is part of a feedback loop.) This
method must set the data types of all ports whose data types are not set.

If the block does not implement this method and Simulink cannot
determine the data types of any of its ports, Simulink sets the data
types of all the ports to double. If the block does not implement this
method and Simulink cannot determine the data types of some, but not
all, of its ports, Simulink sets the unknown ports to the data type of the
port whose data type has the largest size.

Languages C

See Also ssSetOutputPortDataType, ssSetInputPortDataType

8-35

mdlSetDefaultPortDimensionInfo

Purpose Set the default dimensions of the signals accepted or emitted by an
S-function’s ports

Required No

C Syntax void mdlSetDefaultPortDimensionInfo(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

Description Simulink calls this method during signal dimension propagation
when a model does not supply enough information to determine the
dimensionality of signals that can enter or leave the block represented
by S. This method should set the dimensions of any input and output
ports that are dynamically sized to default values. If S does not
implement this method, Simulink sets the dimensions of dynamically
sized ports for which dimension information is unavailable to scalar, i.e.,
1-D signals containing one element.

Example See matlabroot/simulink/src/sfun_matadd.c for an example of how
to use this function.

Languages C

See Also ssSetErrorStatus, ssSetOutputPortMatrixDimensions

8-36

mdlSetInputPortComplexSignal

Purpose Set the numeric types (real, complex, or inherited) of the signals
accepted by an input port

Required No

C Syntax void mdlSetInputPortComplexSignal(SimStruct *S, int_T port,
CSignal_T csig)

C
Arguments

S
SimStruct representing an S-Function block.

port
Index of a port.

csig
Numeric type of signal, either COMPLEX_NO (real) or COMPLEX_YES
(complex).

M Syntax SetInputPortComplexSignal(s, port, typeId)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

port
Integer value specifying index of port to be set.

typeId
Integer value specifying whether the port accepts real (0) or
complex (1) signals.

Description Simulink calls this routine to set the input port numeric type for inputs
that have this attribute set to COMPLEX_INHERITED. The input csig is
the proposed numeric type for this input port. The S-function must
check whether the proposed numeric type is a valid type for the specified
port. If it is valid, the S-function must set the numeric type of the

8-37

mdlSetInputPortComplexSignal

specified input port using ssSetInputPortComplexSignal. Otherwise,
it must report an error using ssSetErrorStatus. The S-function can also
set the numeric types of other input and output ports with inherited
numeric types. Simulink reports an error if the S-function changes the
numeric type of a port whose numeric type is known.

If the S-function does not implement this routine, Simulink assumes
that the S-function accepts a real or complex signal and sets the input
port numeric type to the specified value.

Simulink will call this method until all input ports with inherited
numeric types have their numeric types specified.

Example See matlabroot/simulink/src/sfun_sdotproduct.c for an example of
how to use this function.

Languages C, C++, M

See Also ssSetErrorStatus, ssSetInputPortComplexSignal

8-38

mdlSetInputPortDataType

Purpose Set the data types of the signals accepted by an input port

Required No

C Syntax void mdlSetInputPortDataType(SimStruct *S, int_T port, DTypeId id)

C
Arguments

S
SimStruct representing an S-Function block.

port
Index of a port.

id
Data type ID.

M Syntax SetInputPortDataType(s, port, typeId)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

port
Integer value specifying index of port to be set.

typeId
Integer value specifying ID of port’s data type. Use
s.getDatatypeName(typeId) to get the data type’s name.

Description Simulink calls this routine to set the data type of port when port has
an inherited data type. The data type id is the proposed data type for
this port. Data type IDs for the built-in data types can be found in
matlabroot/simulink/include/simstruc_types.h. The S-function
must check whether the specified data type is a valid data type for the
specified port. If it is a valid data type, it must set the data type of the
input port using ssSetInputPortDataType. Otherwise, it must report
an error using ssSetErrorStatus.

8-39

mdlSetInputPortDataType

The S-function can also set the data types of other input and output
ports if they are unknown. Simulink reports an error if the S-function
changes the data type of a port whose data type has been set.

If the block does not implement this routine, Simulink assumes that
the block accepts any data type and sets the input port data type to
the specified value.

Simulink will call this method until all input ports with inherited data
types have their data types specified.

Languages C, M

See Also ssSetErrorStatus, ssSetInputPortDataType

8-40

mdlSetInputPortDimensionInfo

Purpose Set the dimensions of the signals accepted by an input port

Required No

C Syntax void mdlSetInputPortDimensionInfo(SimStruct *S, int_T port,
const DimsInfo_T *dimsInfo)

C
Arguments

S
SimStruct representing an S-Function block.

port
Index of a port.

dimsInfo
Structure that specifies the signal dimensions supported by the
port.

See ssSetInputPortDimensionInfo for a description of this structure.

M Syntax SetInputPortDimensions(s, port, dims)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

port
Integer value specifying index of port to be set.

dims
1-D array that specifies the signal dimensions supported by the
port, e.g., [5] for a 5-element vector signal or [3 3] for a 3-by-3
matrix signal.

Description Simulink calls this method during dimension propagation with
candidate dimensions dimsInfo for port. If the proposed dimensions
are acceptable, this method should go ahead and set the actual

8-41

mdlSetInputPortDimensionInfo

port dimensions, using ssSetInputPortDimensionInfo. If they
are unacceptable, this method should generate an error via
ssSetErrorStatus.

Note This method can set the dimensions of any other input or output
port whose dimensions derive from the dimensions of port.

By default, Simulink calls this method only if it can fully determine the
dimensionality of port from the port to which it is connected. If it cannot
completely determine the dimensionality from port connectivity, it
invokes mdlSetDefaultPortDimensionInfo. If an S-function can fully
determine the port dimensionality from partial information, the function
should set the option SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALL
in mdlInitializeSizes, using ssSetOptions. If this option is set,
Simulink invokes mdlSetInputPortDimensionInfo even if it can
only partially determine the dimensionality of the input port from
connectivity.

Simulink will call this method until all input ports with inherited
dimensions have their dimensions specified.

Example See matlabroot/simulink/src/sfun_matadd.c for an example of how
to use this function.

Languages C, C++, M

See Also ssSetErrorStatus

8-42

mdlSetInputPortFrameData

Purpose Specify whether an input port accepts frame data

Required No

C Syntax void mdlSetInputPortFrameData(SimStruct *S, int_T port,
Frame_T frameData)

C
Arguments

S
SimStruct representing an S-Function block.

port
Index of a port.

frameData
Frame data.

M Syntax SetInputPortSamplingMode(s, port, mode)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

port
Integer value specifying the index of port whose sampling mode
is to be set.

mode
Integer value specifying the sampling mode of the port (0 =
sample, 1 = frame).

Description This method is called with the candidate frame setting (FRAME_YES
or FRAME_NO) for an input port. If the proposed setting is acceptable,
the method should go ahead and set the actual frame data setting
using ssSetInputPortFrameData. If the setting is unacceptable, an error
should be generated via ssSetErrorStatus. Note that any other input
or output ports whose frame data settings are implicitly defined by

8-43

mdlSetInputPortFrameData

virtue of knowing the frame data setting of the given port can also have
their frame data settings configured.

Simulink will call this method until all input ports with inherited frame
settings have their frame settings specified.

The use of frame-based signals (mode has a value of 1) requires a Signal
Processing Blockset license.

Languages C, C++, M

See Also ssSetInputPortFrameData, ssSetOutputPortFrameData,
ssSetErrorStatus

8-44

mdlSetInputPortSampleTime

Purpose Set the sample time of an input port that inherits its sample time from
the port to which it is connected

Required No

C Syntax void mdlSetInputPortSampleTime(SimStruct *S, int_T port,
real_T sampleTime, real_T offsetTime)

C
Arguments

S
SimStruct representing an S-Function block.

port
Index of a port.

sampleTime
Inherited sample time for port.

offsetTime
Inherited offset time for port.

M Syntax SetInputPortSampleTime(s, port, time)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

port
Integer value specifying the index of port whose sampling mode
is to be set.

time
Two-element array, [period offset], that specifies the period
and offset of the times that this port samples its input.

Description Simulink invokes this method with the sample time that port
inherits from the port to which it is connected. If the inherited
sample time is acceptable, this method should set the sample time of

8-45

mdlSetInputPortSampleTime

port to the inherited time, using ssSetInputPortSampleTime and
ssSetInputPortOffsetTime. If the sample time is unacceptable, this
method should generate an error via ssSetErrorStatus. Note that
any other input or output ports whose sample times are implicitly
defined by virtue of knowing the sample time of the given port can also
have their sample times set via calls to ssSetInputPortSampleTime or
ssSetOutputPortSampleTime.

Simulink invokes this method until all input ports with inherited
sample times are specified.

When inherited port-based sample times are specified, the sample time
is guaranteed to be one of the following where 0.0 < period < inf
and 0.0 <= offset < period.

Sample Time Offset Time

Continuous 0.0 0.0

Discrete period offset

Constant, triggered, and variable-step sample times are not propagated
to S-functions with port-based sample times.

Generally mdlSetInputPortSampleTime is called once per port with
the input port sample time. However, there can be cases where this
function is called more than once. This happens when the simulation
engine is converting continuous sample times to continuous but fixed
in minor steps sample times. When this occurs, the original values of
the sample times specified in mdlInitializeSizes are restored before
this method is called again.

The final sample time specified at the port can be different from (but
equivalent to) the sample time specified by this method. This occurs
when

• The model uses a fixed-step solver and the port has a continuous but
fixed in minor step sample time. In this case, Simulink converts the
sample time to the fundamental sample time for the model.

8-46

mdlSetInputPortSampleTime

• Simulink adjusts the sample time to be as numerically sound as
possible. For example, Simulink converts [0.2499999999999, 0]
to [0.25, 0].

The S-function can examine the final sample times in
mdlInitializeSampleTimes.

Languages C, C++, M

See Also ssSetInputPortSampleTime, ssSetOutputPortSampleTime,
mdlInitializeSampleTimes

8-47

mdlSetInputPortWidth

Purpose Set the width of an input port that accepts 1-D (vector) signals

Required No

C Syntax void mdlSetInputPortWidth(SimStruct *S, int_T port, int_T width)

C
Arguments

S
SimStruct representing an S-Function block.

port
Index of a port.

width
Width of signal.

Description This method is called with the candidate width for a dynamically sized
port. If the proposed width is acceptable, the method should go ahead
and set the actual port width using ssSetInputPortWidth. If the size is
unacceptable, an error should be generated via ssSetErrorStatus. Note
that any other dynamically sized input or output ports whose widths
are implicitly defined by virtue of knowing the width of the given port
can also have their widths set via calls to ssSetInputPortWidth or
ssSetOutputPortWidth.

Simulink invokes this method until all dynamically sized input ports
are configured.

Languages C

See Also ssSetInputPortWidth, ssSetOutputPortWidth, ssSetErrorStatus

8-48

mdlSetOutputPortComplexSignal

Purpose Set the numeric types (real, complex, or inherited) of the signals
accepted by an output port

Required No

C Syntax void mdlSetOutputPortComplexSignal(SimStruct *S, int_T port,
CSignal_T csig)

C
Arguments

S
SimStruct representing an S-Function block.

port
Index of a port.

csig
Numeric type of signal, either COMPLEX_NO (real) or COMPLEX_YES
(complex).

M Syntax SetOutputPortComplexSignal(s, port, typeId)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

port
Integer value specifying the index of port to be set.

typeId
Integer value specifying whether the port produces real (0) or
complex (1) signals.

Description Simulink calls this routine to set the output port numeric type for
outputs that have this attribute set to COMPLEX_INHERITED. The
input argument csig is the proposed numeric type for this output
port. The S-function must check whether the specified numeric type
is a valid type for the specified port. If it is valid, the S-function

8-49

mdlSetOutputPortComplexSignal

must set the numeric type of the specified output port using
ssSetOutputPortComplexSignal. Otherwise, it must report an error,
using ssSetErrorStatus. The S-function can also set the numeric types
of other input and output ports with unknown numeric types. Simulink
reports an error if the S-function changes the numeric type of a port
whose numeric type is known.

If the S-function does not implement this routine, Simulink assumes
that the S-function accepts a real or complex signal and sets the output
port numeric type to the specified value.

Simulink will call this method until all output ports with inherited
numeric types have their numeric types specified.

Example See matlabroot/simulink/src/sfun_sdotproduct.c for an example of
how to use this function.

Languages C, C++, M

See Also ssSetOutputPortComplexSignal, ssSetErrorStatus

8-50

mdlSetOutputPortDataType

Purpose Set the data type of the signals emitted by an output port

Required No

C Syntax void mdlSetOutputPortDataType(SimStruct *S, int_T port,
DTypeId id)

C
Arguments

S
SimStruct representing an S-Function block.

port
Index of an output port.

id
Data type ID.

M Syntax SetOutputPortDataType(s, port, typeId)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

port
Integer value specifying index of port to be set.

typeId
Integer value specifying ID of port’s data type. Use
s.getDatatypeName(typeId) to get the data type’s name.

Description Simulink calls this routine to set the data type of port when port has
an inherited data type. The data type IDid is the proposed data type
for this port. Data type IDs for the built-in data types can be found in
matlabroot/simulink/include/simstruc_types.h. The S-function
must check whether the specified data type is a valid data type for the
specified port. If it is a valid data type, it must set the data type of
port using ssSetOutputPortDataType. Otherwise, it must report an
error, using ssSetErrorStatus.

8-51

mdlSetOutputPortDataType

The S-function can also set the data types of other input and output
ports if their data types have not been set. Simulink reports an error
if the S-function changes the data type of a port whose data type has
been set.

If the block does not implement this method, Simulink assumes that
the block supports any data type and sets the output port data type to
the specified value.

Simulink will call this method until all output ports with inherited data
types have their data types specified.

Languages C, C++, M

See Also ssSetOutputPortDataType, ssSetErrorStatus

8-52

mdlSetOutputPortDimensionInfo

Purpose Set the dimensions of the signals accepted by an output port

Required No

C Syntax void mdlSetOutputPortDimensionInfo(SimStruct *S, int_T port,
const DimsInfo_T *dimsInfo)

C
Arguments

S
SimStruct representing an S-Function block or a Simulink model.

port
Index of a port.

dimsInfo
Structure that specifies the signal dimensions supported by port.

See ssSetInputPortDimensionInfo for a description of this structure.

M Syntax SetOutputPortDimensions(s, port, dims)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

port
Integer value specifying the index of the port to be set.

dims
1-D array that specifies the signal dimensions supported by the
port, e.g., [5] for a 5-element vector signal or [3 3] for a 3-by-3
matrix signal.

Description Simulink calls this method with candidate dimensions dimsInfo
for port. If the proposed dimensions are acceptable, this method
should go ahead and set the actual port dimensions, using

8-53

mdlSetOutputPortDimensionInfo

ssSetOutputPortDimensionInfo. If they are unacceptable, this method
should generate an error via ssSetErrorStatus.

Note This method can set the dimensions of any other input or output
port whose dimensions derive from the dimensions of port.

By default, Simulink calls this method only if it can fully determine the
dimensionality of port from the port to which it is connected. If it cannot
completely determine the dimensionality from port connectivity, it
invokes mdlSetDefaultPortDimensionInfo. If an S-function can fully
determine the port dimensionality from partial information, the function
should set the option SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALL
in mdlInitializeSizes, using ssSetOptions. If this option is set,
Simulink invokes mdlSetOutputPortDimensionInfo even if it can
only partially determine the dimensionality of the output port from
connectivity. Simulink will call this method until all output ports with
inherited dimensions have their dimensions specified.

Example See matlabroot/simulink/src/sfun_matadd.c for an example of how
to use this function.

Languages C, C++, M

See Also ssSetErrorStatus, ssSetOutputPortDimensionInfo

8-54

mdlSetOutputPortSampleTime

Purpose Set the sample time of an output port that inherits its sample time from
the port to which it is connected

Required No

C Syntax void mdlSetOutputPortSampleTime(SimStruct *S, int_T port,
real_T sampleTime, real_T offsetTime)

C
Arguments

S
SimStruct representing an S-Function block.

port
Index of a port.

sampleTime
Inherited sample time for port.

offsetTime
Inherited offset time for port.

M Syntax SetOutputPortSampleTime(s, port, time)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

port
Integer value specifying the index of port whose sampling mode
is to be set.

time
Two-element array, [period offset], that specifies the period
and offset of the times that this port produces output.

Description Simulink calls this method with the sample time that port inherits
from the port to which it is connected. If the inherited sample time
is acceptable, this method should set the sample time of port to the

8-55

mdlSetOutputPortSampleTime

inherited sample time and offset time, using ssSetOutputPortSampleTime
and ssSetOutputPortOffsetTime, or

pd = s.OutputPort(port);
pd.SampleTime = time;

in the case of a Level-2 M-file S-function.

If the inherited sample time is unacceptable, this method should
generate an error via ssSetErrorStatus. Note that this method
can set the sample time of any other input or output port
whose sample time derives from the sample time of port, using
ssSetInputPortSampleTime or ssSetOutputPortSampleTime or the
SampleTime property of the Simulink.BlockPortData object associated
with the port in the case of Level-2 M-file S-functions.

Normally, sample times are propagated forward; however, if sources
feeding this block have inherited sample times, Simulink might
choose to back-propagate known sample times to this block. When
back-propagating sample times, this method is called in succession for
all inherited output port signals.

See mdlSetInputPortSampleTime for more information about when this
method is called.

Languages C, M

See Also ssSetOutputPortSampleTime, ssSetErrorStatus,
ssSetInputPortSampleTime, ssSetOutputPortSampleTime,
mdlSetInputPortSampleTime, Simulink.MSFcnRunTimeBlock,
Simulink.BlockPortData

8-56

mdlSetOutputPortWidth

Purpose Set the width of an output port that outputs 1-D (vector) signals

Required No

C Syntax void mdlSetOutputPortWidth(SimStruct *S, int_T port, int_T width)

C
Arguments

S
SimStruct representing an S-Function block.

port
Index of a port.

width
Width of signal.

Description This method is called with the candidate width for a dynamically sized
port. If the proposed width is acceptable, the method should go ahead
and set the actual port width, using ssSetOutputPortWidth. If the size
is unacceptable, an error should be generated via ssSetErrorStatus.
Note that any other dynamically sized input or output ports whose
widths are implicitly defined by virtue of knowing the width of the given
port can also have their widths set via calls to ssSetInputPortWidth or
ssSetOutputPortWidth.

Languages C

See Also ssSetInputPortWidth, ssSetOutputPortWidth, ssSetErrorStatus

8-57

mdlSetWorkWidths

Purpose Specify the sizes of the work vectors and create the run-time parameters
required by this S-function

Required No

C Syntax void mdlSetWorkWidths(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

M Syntax PostPropagationSetup(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

Description Simulink calls this optional method to enable this S-function to set the
sizes of state and work vectors that it needs to store global data and
to create run-time parameters (see “Run-Time Parameters” on page
7-7). Simulink invokes this method after it has determined the input
port width, output port width, and sample times of the S-function.
This allows the S-function to size the state and work vectors based
on the number and sizes of inputs and outputs and/or the number
of sample times. This method specifies the state and work vector
sizes via the macros ssGetNumContStates, ssSetNumDiscStates,
ssSetNumRWork, ssSetNumIWork, ssSetNumPWork, ssSetNumModes, and
ssSetNumNonsampledZCs.

A C-MEX S-function needs to implement this method only if it does
not know the sizes of all the work vectors it requires when Simulink
invokes the function’s mdlInitializeSizes method. If this S-function
implements mdlSetWorkWidths, it should initialize the sizes of any work
vectors that it needs to DYNAMICALLY_SIZED in mdlInitializeSizes,

8-58

mdlSetWorkWidths

even for those whose exact size it knows at that point. The S-function
should then specify the actual size in mdlSetWorkWidths.

A Level-2 M-file S-function must implement this method if any Dwork
vectors are used in the S-function. In the case of M-file S-functions, this
method sets the number of Dwork vectors and initializes their attributes.
For an example of a Level-2 M-file S-function using Dwork vectors, see
the file matlabroot/toolbox/simulink/simdemos/adapt_lms.m used
in the Simulink model sldemo_msfcn_lms.mdl.

Languages Ada, C, M

See Also mdlInitializeSizes

8-59

mdlSimStatusChange

Purpose Respond to a pause or resumption of the simulation of the model that
contains this S-function

Required No

C Syntax void mdlSimStatusChange(SimStruct *S,
ssSimStatusChangeType simStatus)

C
Arguments

S
SimStruct representing an S-Function block.

simStatus
Status of the simulation, either SIM_PAUSE or SIM_CONTINUE.

Description Simulink calls this routine when a simulation of the model containing S
pauses or resumes.

Example #if defined(MATLAB_MEX_FILE)
#define MDL_SIM_STATUS_CHANGE
static void mdlSimStatusChange(SimStruct *S,

ssSimStatusChangeType simStatus) {
if (simStatus == SIM_PAUSE) {

slPrintf("Pause has been called! \n");
} else if (simStatus == SIM_CONTINUE) {

slPrintf("Continue has been called! \n");
}

}
#endif

Languages C

8-60

mdlStart

Purpose Initialize the state vectors of this S-function

Required No

C Syntax void mdlStart(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

M Syntax Start(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

Description Simulink invokes this optional method at the beginning of a simulation.
It should initialize the continuous and discrete states, if any, of this
S-Function block. Use ssGetContStates and/or ssGetDiscStates to
get the states. This method can also perform any other initialization
activities that this S-function requires, such as allocating memory or
setting up user data.

Languages Ada, C, M

Example See matlabroot/simulink/src/sfun_directlook.c for an example of
how to use this function.

See Also mdlInitializeConditions, ssGetContStates, ssGetDiscStates

8-61

mdlTerminate

Purpose Perform any actions required at termination of the simulation

Required Yes

C Syntax void mdlTerminate(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

Description This method should perform any actions, such as freeing memory, that
must be performed at the end of simulation or when an S-Function
block is destroyed (e.g., when it is deleted from a model). The option
SS_OPTION_CALL_TERMINATE_ON_EXIT (see ssSetOptions) determines
whether Simulink invokes this method. If this option is not set,
Simulink invokes mdlTerminate at the end of the simulation only if
the mdlStart method of at least one block in the model has executed
without error during the simulation. If this option is set, Simulink
always invokes the mdlTerminate method at the end of a simulation
run and whenever it destroys a block.

Example Suppose your S-function allocates blocks of memory in mdlStart and
saves pointers to the blocks in a PWork vector. The following code
fragment would free this memory.

{
int i;
for (i = 0; i<ssGetNumPWork(S); i++) {

if (ssGetPWorkValue(S,i) != NULL) {
free(ssGetPWorkValue(S,i));

}
}

}

Languages Ada, C, M

8-62

mdlTerminate

See Also ssSetOptions

8-63

mdlUpdate

Purpose Update a block’s states

Required No

C Syntax void mdlUpdate(SimStruct *S, int_T tid)

C
Arguments

S
SimStruct representing an S-Function block.

tid
Task ID.

M Syntax Update(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

Description Simulink invokes this optional method at each major simulation time
step. The method should compute the S-function’s states at the current
time step and store the states in the S-function’s state vector. The
method can also perform any other tasks that the S-function needs to
perform at each major time step.

Use this code if your S-function has one or more discrete states or does
not have direct feedthrough.

The reason for this is that most S-functions that do not have discrete
states but do have direct feedthrough do not have update functions.
Therefore, Simulink is able to eliminate the need for the extra call in
these circumstances.

If your S-function needs to have its mdlUpdate routine called and
it does not satisfy either of the above two conditions, specify that it
has a discrete state, using the ssSetNumDiscStates macro in the
mdlInitializeSizes function.

8-64

mdlUpdate

The tid (task ID) argument specifies the task running when the
mdlOutputs routine is invoked. You can use this argument in the
mdlUpdate routine of a multirate S-Function block to encapsulate
task-specific blocks of code (see “Multirate S-Function Blocks” on page
7-30).

Example For an example that uses this function to update discrete states, see
matlabroot/simulink/src/dsfunc.c. For an example that uses this
function to update the transfer function coefficients of a time-varying
continuous transfer function, see matlabroot/simulink/src/stvctf.c.

Languages Ada, C, C++, M

See Also mdlDerivatives, ssGetContStates, ssGetDiscStates

8-65

mdlZeroCrossings

Purpose Update zero-crossing vector

Required No

C Syntax void mdlZeroCrossings(SimStruct *S)

C
Arguments

S
SimStruct representing an S-Function block.

M Syntax ProcessParameters(s)

M
Arguments

s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

Description An S-function needs to provide this optional method only if it does
zero-crossing detection. Implementing zero-crossing detection typically
requires using the zero-crossing and mode work vectors to determine
when a zero crossing occurs and how the S-function’s outputs should
respond to this event. The mdlZeroCrossings method should update
the S-function’s zero-crossing vector, using ssGetNonsampledZCs.

You can use the optional mdlZeroCrossings routine when your
S-function has registered the CONTINUOUS_SAMPLE_TIME and has
nonsampled zero crossings (ssGetNumNonsampledZCs(S) > 0). The
mdlZeroCrossings routine is used to provide Simulink with signals
that are to be tracked for zero crossings. These are typically

• Continuous signals entering the S-function

• Internally generated signals that cross zero when a discontinuity
would normally occur in mdlOutputs

Thus, the zero-crossing signals are used to locate the discontinuities and
end the current time step at the point of the zero crossing. To provide

8-66

mdlZeroCrossings

Simulink with zero-crossing signals, mdlZeroCrossings updates the
ssGetNonsampleZCs(S) vector.

Example For an example, see matlabroot/simulink/src/sfun_zc_sat.c. A
detailed description of this example can be found in “Work Vectors and
Zero Crossings” on page 7-38 in the Simulink documentation.

Languages C, C++, M

See Also mdlInitializeSizes, ssGetNonsampledZCs

8-67

9

SimStruct Functions — By
Category

Introduction (p. 9-2) Overview of SimStruct macros and
functions.

SimStruct Macros and Functions
Listed by Usage (p. 9-3)

SimStruct functions listed by usage.

9 SimStruct Functions — By Category

Introduction
Simulink provides a set of functions for accessing the fields of an S-function’s
simulation data structure (SimStruct). S-function callback methods use these
functions to store and retrieve information about an S-function.

This reference describes the syntax and usage of each SimStruct function.
The descriptions appear alphabetically by name to facilitate location of a
particular function. This section also provides listings of functions by usage
to speed location of macros and functions for specific purposes, such as
implementing data type support.

Language Support
Some SimStruct functions are available only in some of the languages
supported by Simulink. The reference page for each SimStruct macro or
function lists the languages in which it is available. If the SimStruct function
is available in C, the reference page gives its C syntax. Otherwise, it gives
its syntax in the language in which it is available.

Note Most SimStruct functions available in C are implemented as C macros.

The SimStruct
The file matlabroot/simulink/include/simstruc.h is a C language header
file that defines the Simulink data structure and the SimStruct access
macros. It encapsulates all the data relating to the model or S-function,
including block parameters and outputs.

There is one SimStruct data structure allocated for the Simulink model.
Each S-function in the model has its own SimStruct associated with it.
The organization of these SimStructs is much like a directory tree. The
SimStruct associated with the model is the root SimStruct. The SimStructs
associated with the S-functions are the child SimStructs.

9-2

SimStruct Macros and Functions Listed by Usage

SimStruct Macros and Functions Listed by Usage
This section groups SimStruct macros by usage.

SimStruct Macros and Functions Listed by Usage

Data Type

Dialog Box Parameters

Error Handling and Status

Function Call

I/O Port — Signal Specification

I/O Port — Signal Dimensions

I/O Port — Signal Access on page 9-10

Run-Time Parameters on page 9-12

Sample Time on page 9-13

Simulation Information on page 9-15

State and Work Vector on page 9-17

Miscellaneous

Real-Time Workshop

Data Type

Macro Description

ssGetDataTypeId Get the ID for a data type.

ssGetDataTypeIdAliasedThruTo Get the ID for the built-in data type
associated with a data type alias.

ssGetDataTypeName Get a data type’s name.

ssGetDataTypeSize Get a data type’s size.

ssGetDataTypeZero Get the zero representation of a data
type.

ssGetInputPortDataType Get the data type of an input port.

9-3

9 SimStruct Functions — By Category

Data Type (Continued)

Macro Description

ssGetNumDataTypes Get the number of data types defined by
an S-function or the model.

ssGetOutputPortDataType Get the data type of an output port.

ssGetOutputPortSignal Get an output signal of any type except
double.

ssRegisterDataType Register a data type.

ssSetDataTypeSize Specify the size of a data type.

ssSetDataTypeZero Specify the zero representation of a data
type.

ssSetInputPortDataType Specify the data type of signals accepted
by an input port.

ssSetOutputPortDataType Specify the data type of an output port.

Dialog Box Parameters

Macro Description

ssGetDTypeIdFromMxArray Get the Simulink data type of a dialog
parameter.

ssGetNumParameters Get the number of parameters that this
block has (Ada only).

ssGetNumSFcnParams Get the number of parameters that an
S-function expects.

ssGetSFcnParam Get a parameter entered by a user in the
S-Function block dialog box.

ssGetSFcnParamsCount Get the actual number of parameters
specified by the user.

ssSetNumSFcnParams Set the number of parameters that an
S-function expects.

ssSetParameterName Set the name of a parameter (Ada only).

9-4

SimStruct Macros and Functions Listed by Usage

Dialog Box Parameters (Continued)

Macro Description

ssSetParameterTunable Set the tunability of a parameter (Ada only).

ssSetSFcnParamNotTunable Obsolete.

ssSetSFcnParamTunable Specify the tunability of a dialog box
parameter.

Error Handling and Status

Macro Description

ssGetErrorStatus Get a string that identifies the last error.

ssPrintf Print a variable-content msg.

ssSetErrorStatus Report errors.

ssWarning Display a warning message.

Function Call

Macro Description

ssCallSystemWithTid Execute a function-call subsystem connected
to an S-function.

ssDisableSystemWithTid Disable a function-call subsystem connected
to this S-function block.

ssEnableSystemWithTid Enable a function-call subsystem connected
to this S-function.

ssGetExplicitFCSSCtrl Determine whether this S-function explicitly
enables and disables the function-call
subsystem that it invokes.

9-5

9 SimStruct Functions — By Category

Function Call (Continued)

Macro Description

ssSetCallSystemOutput Specify that an output port element issues a
function call.

ssSetExplicitFCSSCtrl Specify whether an S-function explicitly
enables and disables the function-call
subsystem that it calls.

Input and Output Ports

I/O Port — Signal Specification

Macro Description

ssGetInputPortComplexSignal Get the numeric type (complex
or real) of an input port.

ssGetInputPortDataType Get the data type of an input
port.

ssGetInputPortDirectFeedThrough Determine whether an input
port has direct feedthrough.

ssGetInputPortFrameData Determine whether a port
accepts signal frames.

ssGetInputPortOffsetTime Determine the offset time of an
input port.

ssGetInputPortRequiredContiguous Determine whether the signal
elements entering a port must be
contiguous.

ssGetInputPortSampleTime Determine the sample time of an
input port.

ssGetInputPortSampleTimeIndex Get the sample time index of an
input port.

ssGetOutputPortComplexSignal Get the numeric type (complex
or real) of an output port.

9-6

SimStruct Macros and Functions Listed by Usage

I/O Port — Signal Specification (Continued)

Macro Description

ssGetOutputPortDataType Get the data type of an output
port.

ssGetOutputPortFrameData Determine whether a port
outputs signal frames.

ssGetOutputPortOffsetTime Determine the offset time of an
output port.

ssGetOutputPortSampleTime Determine the sample time of an
output port.

ssSetInputPortComplexSignal Set the numeric type (real or
complex) of an input port.

ssSetInputPortDataType Set the data type of an input
port.

ssSetInputPortDirectFeedThrough Specify that an input port is a
direct-feedthrough port.

ssSetInputPortFrameData Specify whether a port accepts
signal frames.

ssSetInputPortOffsetTime Specify the sample time offset
for an input port.

ssSetInputPortRequiredContiguous Specify that the signal elements
entering a port must be
contiguous.

ssSetInputPortSampleTime Set the sample time of an input
port.

ssSetNumInputPorts Set the number of input ports on
an S-Function block.

ssSetNumOutputPorts Specify the number of output
ports on an S-Function block.

ssSetOneBasedIndexInputPort Specify that an input port
expects one-based indices.

9-7

9 SimStruct Functions — By Category

I/O Port — Signal Specification (Continued)

Macro Description

ssSetOneBasedIndexOutputPort Specify that an output port emits
one-based indices.

ssSetOutputPortComplexSignal Specify the numeric type (real or
complex) of this port.

ssSetOutputPortDataType Specify the data type of an
output port.

ssSetOutputPortFrameData Specify whether a port outputs
framed data.

ssSetOutputPortOffsetTime Specify the sample time offset
value of an output port.

ssSetOutputPortSampleTime Specify the sample time of an
output port.

ssSetZeroBasedIndexInputPort Specify that an input port
expects zero-based indices.

ssSetZeroBasedIndexOutputPort Specify that an output port emits
zero-based indices.

I/O Port — Signal Dimensions

Macro Description

ssGetInputPortDimensions Get the dimensions of the signal
accepted by an input port.

ssGetInputPortNumDimensions Get the dimensionality of the
signals accepted by an input
port.

ssGetInputPortWidth Determine the width of an input
port.

ssGetOutputPortDimensions Get the dimensions of the signal
leaving an output port.

9-8

SimStruct Macros and Functions Listed by Usage

I/O Port — Signal Dimensions (Continued)

Macro Description

ssGetOutputPortNumDimensions Get the number of dimensions of
an output port.

ssGetOutputPortWidth Determine the width of an
output port.

ssSetInputPortDimensionInfo Set the dimensionality of an
input port.

ssSetInputPortMatrixDimensions Specify dimension information
for an input port that accepts
matrix signals.

ssSetInputPortVectorDimension Specify dimension information
for an input port that accepts
vector signals.

ssSetInputPortWidth Set the width of a 1-D (vector)
input port.

ssSetOutputPortDimensionInfo Specify the dimensionality of an
output port.

ssSetOutputPortMatrixDimensions Specify dimension information
for an output port that emits
matrix signals.

ssSetOutputPortVectorDimension Specify dimension information
for an output port that emits
vector signals.

ssSetOutputPortWidth Specify the width of a 1-D
(vector) output port.

9-9

9 SimStruct Functions — By Category

I/O Port — Signal Dimensions (Continued)

Macro Description

ssSetOutputPortMatrixDimensions Specify the dimensions of a 2-D
(matrix) signal.

ssSetVectorMode Specify the vector mode that an
S-function supports.

I/O Port — Signal Access

Macro Description

ssGetInputPortBufferDstPort Determine the output port that
is overwriting an input port’s
memory buffer.

ssGetInputPortConnected Determine whether an
S-Function block port is
connected to a nonvirtual block.

ssGetInputPortOptimOpts Determine the reusability
setting of the memory allocated
to the input port of an S-function.

ssGetInputPortOverWritable Determine whether an input
port can be overwritten.

ssGetInputPortRealSignal Get the address of a real,
contiguous signal entering an
input port.

ssGetInputPortRealSignalPtrs Access the signal elements
connected to an input port.

ssGetInputPortSignal Get the address of a contiguous
signal entering an input port.

ssGetInputPortSignalAddress Get the address of an input port’s
signal (Ada only).

ssGetInputPortSignalPtrs Get pointers to input signal
elements of type other than
double.

9-10

SimStruct Macros and Functions Listed by Usage

I/O Port — Signal Access (Continued)

Macro Description

ssGetNumInputPorts Can be used in any routine
(except mdlInitializeSizes) to
determine how many input ports
a block has.

ssGetNumOutputPorts Can be used in any routine
(except mdlInitializeSizes)
to determine how many output
ports a block has.

ssGetOutputPortConnected Determine whether an output
port is connected to a nonvirtual
block.

ssGetOutputPortBeingMerged Determine whether the output
of this block is connected to a
Merge block.

ssGetOutputPortOptimOpts Determine the reusability of the
memory allocated to the output
port of an S-function.

ssGetOutputPortRealSignal Access the elements of a signal
connected to an output port.

ssGetOutputPortSignal Get the vector of signal elements
emitted by an output port.

ssGetOutputPortSignalAddress Get the address of an output
port’s signal (Ada only).

ssSetInputPortOptimOpts Specify the reusability of the
memory allocated to the input
port of an S-function.

ssSetInputPortOverWritable Specify whether an input port is
overwritable by an output port.

9-11

9 SimStruct Functions — By Category

I/O Port — Signal Access (Continued)

Macro Description

ssSetOutputPortOptimOpts Specify the reusability of the
memory allocated to the output
port of an S-function.

ssSetOutputPortOverwritesInputPort Specify whether an output port
can share its memory buffer with
an input port.

Run-Time Parameters
These macros allow you to create, update, and access run-time parameters
corresponding to a block’s dialog parameters.

Run-Time Parameters

Macro Description

ssGetNumRunTimeParams Get the number of
run-time parameters
created by this
S-function.

ssGetRunTimeParamInfo Get the attributes of
a specified run-time
parameter.

ssRegAllTunableParamsAsRunTimeParams Register all tunable
dialog parameters as
run-time parameters.

ssRegDlgParamAsRunTimeParam Register a run-time
parameter.

ssSetNumRunTimeParams Specify the number of
run-time parameters
to be created by this
S-function.

9-12

SimStruct Macros and Functions Listed by Usage

Run-Time Parameters (Continued)

Macro Description

ssSetRunTimeParamInfo Specify the attributes
of a specified run-time
parameter.

ssUpdateAllTunableParamsAsRunTimeParams Update all run-time
parameters
corresponding to
tunable dialog
parameters.

ssUpdateDlgParamAsRunTimeParam Update a run-time
parameter.

ssUpdateRunTimeParamData Update the value of
a specified run-time
parameter.

ssUpdateRunTimeParamInfo Update the attributes
of a specified run-time
parameter from the
attributes of the
corresponding dialog
parameters.

Sample Time

Macro Description

ssGetInputPortSampleTime Determine the sample time of an
input port.

ssGetInputPortSampleTimeIndex Get the sample time index of an
input port.

ssGetNumSampleTimes Get the number of sample times an
S-function has.

ssGetOffsetTime Determine one of an S-function’s
sample time offsets.

9-13

9 SimStruct Functions — By Category

Sample Time (Continued)

Macro Description

ssGetOutputPortSampleTime Determine the sample time of an
output port.

ssGetPortBasedSampleTimeBlockIs-
Triggered

Determine whether a block that
uses port-based sample times
resides in a triggered subsystem.

ssGetSampleTime Determine one of an S-function’s
sample times.

ssGetSampleTimeOffset Get the offset of the current sample
time (Ada only).

ssGetSampleTimePeriod Get the period of the current sample
time (Ada only).

ssGetTNext Get the time of the next sample
hit in a discrete S-function with a
variable sample time.

ssIsContinuousTask Determine whether a specified rate
is the continuous rate.

ssIsSampleHit Determine the sample rate at which
an S-function is operating.

ssIsSpecialSampleHit Determine whether the current
sample time hits two specified
rates.

ssSampleAndOffsetAreTriggered Determine whether a sample time
and offset value pair indicate a
triggered sample time.

ssSetInputPortSampleTime Set the sample time of an input
port.

ssSetModelReferenceSampleTime-
InheritanceRule

Specify whether use of an
S-function in a submodel prevents
the submodel from inheriting its
sample time from the parent model.

9-14

SimStruct Macros and Functions Listed by Usage

Sample Time (Continued)

Macro Description

ssSetNumSampleTimes Set the number of sample times an
S-function has.

ssSetOffsetTime Specify the offset of a sample time.

ssSetSampleTime Specify a sample time for an
S-function.

ssSetTNext Specify the time of the next sample
hit in an S-function.

Simulation Information

Macro Description

ssGetAbsTol Get the absolute tolerances used by a model’s
variable-step solver.

ssGetBlockReduction Determine whether a block has requested
block reduction before the simulation has
begun and whether it has actually been
reduced after the simulation loop has begun.

ssGetErrorStatus Get a string that identifies the last error.

ssGetInlineParameters Determine whether the user has set the
inline parameters option for the model
containing this S-function.

ssGetSimMode Determine the context in which an
S-function is being invoked: normal
simulation, external-mode simulation,
model editor, etc.

ssGetSolverMode Get the solver mode being used to solve the
S-function.

ssGetSolverName Get the name of the solver being used for
the simulation.

9-15

9 SimStruct Functions — By Category

Simulation Information (Continued)

Macro Description

ssGetStateAbsTol Get the absolute tolerance used by the
model’s variable-step solver for a specified
state.

ssGetStopRequested Get the value of the simulation stop
requested flag.

ssGetT Get the current base simulation time.

ssGetTaskTime Get the current time for a task.

ssGetTFinal Get the end time of the current simulation.

ssGetTNext Get the time of the next sample hit.

ssGetTStart Get the start time of the current simulation.

ssIsFirstInitCond Determine whether this is the first call to
mdlInitializeConditions.

ssIsMajorTimeStep Determine whether the current time step is
a major time step.

ssIsMinorTimeStep Determine whether the current time step is
a minor time step.

ssIsVariableStepSolver Determine whether the current solver is a
variable-step solver.

ssSetBlockReduction Request that Simulink attempt to reduce a
block.

ssSetSolverNeedsReset Ask Simulink to reset the solver.

ssSetStopRequested Ask Simulink to terminate the simulation at
the end of the current time step.

9-16

SimStruct Macros and Functions Listed by Usage

State and Work Vector
These macros enable an S-function to access and set the S-function’s work
vectors.

State and Work Vector

Macro Description

ssGetContStateAddress Get the address of a block’s continuous state
vector.

ssGetContStates Get an S-function’s continuous states.

ssGetDiscStates Get an S-function’s discrete states.

ssGetDWork Get a DWork vector.

ssGetDWorkComplexSignal Determine whether the elements of a
data type work vector are real or complex
numbers.

ssGetDWorkDataType Get the data type of a data type work vector.

ssGetDWorkName Get the name of a data type work vector.

ssGetDWorkUsedAsDState Determine whether a data type work vector
is used as a discrete state vector.

ssGetDWorkWidth Get the size of a data type work vector.

ssGetdX Get the derivatives of the continuous states
of an S-function.

ssGetIWork Get an S-function’s integer-valued (int_T)
work vector.

ssGetIWorkValue Get a value from a block’s integer work
vector.

ssGetModeVector Get an S-function’s mode work vector.

ssGetModeVectorValue Get an element of a block’s mode vector.

ssGetNonsampledZCs Get an S-function’s zero-crossing signals
vector.

ssGetNumContStates Determine the number of continuous states
that an S-function has.

9-17

9 SimStruct Functions — By Category

State and Work Vector (Continued)

Macro Description

ssGetNumDiscStates Determine the number of discrete states
that an S-function has.

ssGetNumDWork Get the number of data type work vectors
used by a block.

ssGetNumIWork Get the size of an S-function’s integer work
vector.

ssGetNumModes Determine the size of an S-function’s mode
vector.

ssGetNumNonsampledZCs Determine the number of nonsampled zero
crossings that an S-function detects.

ssGetNumPWork Determine the size of an S-function’s pointer
work vector.

ssGetNumRWork Determine the size of an S-function’s
real-valued (real_T) work vector.

ssGetPWork Get an S-function’s pointer (void *) work
vector.

ssGetPWorkValue Get a pointer from a pointer work vector.

ssGetRealDiscStates Get the real (real_T) values of an
S-function’s discrete state vector.

ssGetRWork Get an S-function’s real-valued (real_T)
work vector.

ssGetRWorkValue Get an element of an S-function’s real-valued
work vector.

ssSetDWorkComplexSignal Specify whether the elements of a data type
work vector are real or complex.

ssSetDWorkDataType Specify the data type of a data type work
vector.

ssSetDWorkName Specify the name of a data type work vector.

9-18

SimStruct Macros and Functions Listed by Usage

State and Work Vector (Continued)

Macro Description

ssSetDWorkUsedAsDState Specify that a data type work vector is used
as a discrete state vector.

ssSetDWorkWidth Specify the width of a data type work vector.

ssSetIWorkValue Set an element of a block’s integer work
vector.

ssSetModeVectorValue Set an element of a block’s mode vector.

ssSetNumContStates Specify the number of continuous states that
an S-function has.

ssSetNumDiscStates Specify the number of discrete states that
an S-function has.

ssSetNumDWork Specify the number of data type work vectors
used by a block.

ssSetNumIWork Specify the size of an S-function’s integer
(int_T) work vector.

ssSetNumModes Specify the number of operating modes that
an S-function has.

ssSetNumNonsampledZCs Specify the number of zero crossings that an
S-function detects.

ssSetNumPWork Specify the size of an S-function’s pointer
(void *) work vector.

ssSetNumRWork Specify the size of an S-function’s real
(real_T) work vector.

9-19

9 SimStruct Functions — By Category

State and Work Vector (Continued)

Macro Description

ssSetPWorkValue Set an element of a block’s pointer work
vector.

ssSetRWorkValue Set an element of a block’s floating-point
work vector.

Miscellaneous

Macro Description

ssCallExternalModeFcn Invoke the external mode function for an
S-function.

ssGetModelName Get the name of an S-Function block or model
containing the S-function.

ssGetParentSS Get the parent of an S-function.

ssGetPath Get the path of an S-function or the model
containing the S-function.

ssGetRootSS Return the root (model) SimStruct.

ssGetUserData Access user data.

ssSetExternalModeFcn Specify the external mode function for an
S-function.

ssSetOptions Set various simulation options.

9-20

SimStruct Macros and Functions Listed by Usage

Miscellaneous (Continued)

Macro Description

ssSetPlacementGroup Specify the execution order of a sink or source
S-function.

ssSetUserData Specify user data.

Real-Time Workshop

Macro Description

ssGetDWorkRTWIdentifier Get the identifier used to declare a
DWork vector in code generated from
the associated S-function.

ssGetDWorkRTWStorageClass Get the storage class of a DWork vector
in code generated from the associated
S-function.

ssGetDWorkRTWTypeQualifier Get the C type qualifier (e.g., const)
used to declare a DWork vector in
code generated from the associated
S-function.

ssGetPlacementGroup Get the name of the placement group
of a block.

ssSetDWorkRTWIdentifier Set the identifier used to declare a
DWork vector in code generated from
the associated S-function.

ssSetDWorkRTWStorageClass Set the storage class of a DWork vector
in code generated from the associated
S-function.

ssSetDWorkRTWTypeQualifier Set the C type qualifier (e.g., const)
used to declare a DWork vector in
code generated from the associated
S-function.

ssSetPlacementGroup Specify the name of the placement
group of a block.

9-21

9 SimStruct Functions — By Category

Real-Time Workshop (Continued)

Macro Description

ssWriteRTW2dMatParam Write a Simulink matrix parameter to
the S-function’s model.rtw file.

ssWriteRTWMx2dMatParam Write a MATLAB matrix parameter to
the S-function’s model.rtw file.

ssWriteRTWMxVectParam Write a MATLAB vector parameter to
the S-function’s model.rtw file.

ssWriteRTWParameters Write tunable parameters to the
S-function’s model.rtw file.

ssWriteRTWParamSettings Write settings for the S-function’s
parameters to the model.rtw file.

ssWriteRTWScalarParam Write a scalar parameter to the
S-function’s model.rtw file.

ssWriteRTWStr Write a string to the S-function’s
model.rtw file.

ssWriteRTWStrParam Write a string parameter to the
S-function’s model.rtw file.

ssWriteRTWStrVectParam Write a string vector parameter to the
S-function’s model.rtw file.

ssWriteRTWVectParam Write a Simulink vector parameter to
the S-function’s model.rtw file.

ssWriteRTWWorkVect Write the S-function’s work vectors to
the model.rtw file.

9-22

A

Examples

Use this list to find examples in the documentation.

A Examples

S-Function Features
“Passing Parameters to S-Functions” on page 1-4
“Multirate S-Function Blocks” on page 7-30
“Example Involving a Pointer Work Vector” on page 7-41

S-Function Examples
“S-Function Examples” on page 1-19
“Example of a Continuous State S-Function” on page 7-56
“Example of a Discrete State S-Function” on page 7-63
“Example of a Hybrid System S-Function” on page 7-69
“Example of a Variable-Step S-Function” on page 7-77
“Example of a Zero Crossing S-Function” on page 7-83
“Example of a Time-Varying Continuous Transfer Function” on page 7-101

S-Function Builder
“Building S-Functions Automatically” on page 3-6
“Library/Object/Source files” on page 3-23
“Enable access to SimStruct” on page 3-34

Writing S-Functions in C
“Example of a Basic C MEX S-Function” on page 3-35

Creating C++ S-Functions
“Source File Format” on page 4-2

A-2

Creating Ada S-Functions

Creating Ada S-Functions
“Ada S-Function Specification” on page 5-3
“Ada S-Function Body” on page 5-4
“Example of an Ada S-Function” on page 5-11

Creating Fortran S-Functions
“Example of a Level 1 Fortran S-Function” on page 6-3
“Example C MEX S-Function Calling Fortran Code” on page 6-16

A-3

A Examples

A-4

Index

IndexA
Ada S-functions

creating 5-3
example 5-11
GNAT Ada95 compiler 5-10
mex syntax 5-10
source file format 5-3
specification 5-3

additional parameters for M-file
S-functions 2-11

array bounds
checking 7-54

B
block I/O ports 7-12
block-based sample times 7-21

specifying 7-21
Build Info pane

S-Function Builder 3-32

C
C language header file

matlabroot/simulink/include/-
simstruc.h 9-2

C MEX S-functions
advantages 3-3
converting from level 1 to level 2 3-68
creating 3-4
definition 1-2
example 3-35
modes for compiling 3-44
S-Function Builder 3-6
Simulink interaction 3-59

C++ objects
making persistent 4-6

C++ S-functions
building 4-8
mex command 4-8

C-to-Fortran gateway S-function 6-8
callback methods 1-10
CFortran 6-12
cg_sfun.h 3-43
checking array bounds 7-54
compiler compatibility

Fortran 6-9
continuous blocks

setting sample time 7-31
Continuous Derivatives pane

S-Function Builder 3-28
continuous state S-function example (C

MEX) 7-56
creating persistent C++ objects 4-6

D
data types

using user-defined 7-18
direct feedthrough 1-13
discrete state S-function example (C

MEX) 7-63
Discrete Update pane

S-Function Builder 3-30
dynamically sized inputs 1-14

E
error handling

checking array bounds 7-54
exception free code 7-52

examples
Ada S-function specification 5-3
C MEX S-function 3-35
continuous state S-function (C MEX) 7-56
discrete state S-function (C MEX) 7-63
Fortran MEX S-function 6-3
hybrid system S-function (C MEX) 7-69
pointer work vector 7-41
sample time for continuous block 7-31

Index-1

Index

sample time for hybrid block 7-32
time-varying continuous transfer function

(C MEX) 7-101
variable-step S-function (C MEX) 7-77
zero-crossing S-function (C MEX) 7-83

exception free code 7-53
extern "C" statement 4-2

F
Fortran compilers 6-13
Fortran math library 6-11
Fortran MEX S-functions

example 6-3
template file 6-3

frame-based signals, implementing in
S-functions 7-49

function-call subsystems 7-44

H
header files 3-42
hybrid blocks

setting sample time 7-32
hybrid sample times

specifying 7-30
hybrid system S-function example (C

MEX) 7-69

I
Initialization pane

S-Function Builder 3-14
input ports

how to create 7-12
inputs, dynamically sized 1-14

L
level 1 C MEX S-functions

converting to level 2 3-68

Libraries pane
S-Function Builder 3-22

M
M-file S-functions

arguments 2-8
creating 2-8
defining characteristics 2-10
definition 2-8
passing additional parameters 2-11
routines 2-8

masked multiport S-functions 7-17
matlabroot/simulink/include/simstruc.h C

language header file 9-2
matlabroot/simulink/src/csfunc.c example

file 7-57
matlabroot/simulink/src/dsfunc.c example

file 7-63
matlabroot/simulink/src/mixedm.c example

file 7-70
matlabroot/simulink/src/sfun_counter_-

cpp.cpp
ensuring Simulink compatibility of C++

S-functions 4-2
matlabroot/simulink/src/sfun_timestwo_for.F

Fortran example file 6-3
matlabroot/simulink/src/sfun_zc_sat.c

example file 7-84
matlabroot/simulink/src/stvctf.c example

file 7-101
matlabroot/simulink/src/vsfunc.c example

file 7-77
matrix.h 3-42
mdlCheckParameters 8-2
mdlDerivatives 8-5
mdlGetTimeOfNextVarHit 8-8
mdlInitializeConditions 8-10
mdlInitializeSampleTimes 8-12
mdlInitializeSizes 8-16

Index-2

Index

and sizes structure 1-14
calling sizes 2-10

mdlOutputs 8-22
mdlProcessParameters 8-23
mdlRTW 8-32
mdlSetDefaultPortComplexSignals 8-34
mdlSetDefaultPortDataTypes 8-35
mdlSetDefaultPortDimensionInfo 8-36
mdlSetInputPortComplexSignal 8-37
mdlSetInputPortDataType 8-39
mdlSetInputPortDimensionInfo 8-41
mdlSetInputPortFrameData 8-43
mdlSetInputPortSampleTime 8-45
mdlSetInputPortWidth 8-48
mdlSetOutputPortComplexSignal 8-49
mdlSetOutputPortDataType 8-51 8-60
mdlSetOutputPortDimensionInfo 8-53
mdlSetOutputPortSampleTime 8-55
mdlSetOutputPortWidth 8-57
mdlSetWorkWidths 8-58
mdlStart 8-61
mdlTerminate 8-62
mdlUpdate 8-64
mdlZeroCrossings 8-66
memory allocation 7-43
memory and work vectors 7-36
mex command

building Ada S-functions 5-10
building C MEX S-functions 3-40
building C++ S-functions 4-8

mex.h 3-42
multirate S-Function blocks 7-30

synchronizing 7-32

O
obsolete macros 3-71
output ports

how to create 7-14
Outputs pane

S-Function Builder 3-24

P
parameters

M-file S-functions 2-11
passing to S-functions 1-4
run-time parameters 7-7
tunable parameters 7-4

penddemo demo 1-6
persistence

C++ objects 4-6
port-based sample times 7-24

constant 7-26
inherited 7-26
specifying 7-24
triggered 7-28

R
reentrancy 7-36
run-time parameter names, uniqueness of 7-8
run-time parameters 7-7
run-time routines 7-53

S
S-Function blocks

multirate 7-30
S-functions parameters field 7-2
synchronizing multirate 7-32

S-Function Builder
Build Info pane 3-32
Continuous Derivatives pane 3-28
customizing 3-11
Discrete Update pane 3-30
for C MEX S-functions 3-6
Initialization pane 3-14
Libraries pane 3-22
Outputs pane 3-24
setting the include path 3-23

Index-3

Index

S-function routines
M-file 2-8

S_FUNCTION_LEVEL 2, #define 3-41
S_FUNCTION_NAME, #define 3-41
S-functions 2-8 3-3 4-1 5-2 6-3

building C++ 4-8
C MEX 1-2
creating Ada 5-3
creating C MEX 3-4
creating Fortran 6-3
creating level 2 with Fortran 6-8
creating persistent C++ objects 4-6
creating run-time parameters 7-8
definition 1-2
direct feedthrough 1-13
exception free code 7-53
level 1 and level 2 6-2
masked multiport 7-17
purpose 1-6
routines 1-9
run-time parameters 7-7
run-time routines 7-53
using in models 1-3
when to use 1-6
writing in C++ 4-2
See also Ada S-functions; C MEX
S-functions; C++ S-functions; Fortran
MEX S-functions; M-file S-functions

S-functions parameters field
S-Function block 7-2

sample times
block-based 7-21
continuous block example 7-31
hybrid block example 7-32
port-based 7-24
specifying block-based 7-20 to 7-21
specifying hybrid 7-30
specifying port-based 7-24

scalar expansion of inputs 7-15

sfuntmpl.c template 3-41
sfuntmpl_fortran.F template 6-3
sfuntmpl.m template

M-file S-function 2-8
simsizes function

M-file S-function 2-10
SimStruct 3-43
SimStruct macros 9-3
simulation loop 1-7
simulation stages 1-7
simulink.c 3-43
sizes structure

fields
M-file S-function 2-10

returned in mdlInitializeSizes 1-14
ssGetModeVectorValue 9-17
synchronizing multirate S-Function

blocks 7-32

T
templates

M-file S-function 2-8
time-varying continuous transfer function

example (C MEX) 7-101
tmwtypes.h 3-42
tunable parameters 7-4

V
variable-step S-function example (C

MEX) 7-77

W
work vectors 7-36
writing S-functions in Ada 5-3
writing S-functions in C++ 4-2
writing S-functions in MATLAB 2-8

Index-4

Index

Z
zero-crossing S-function example (C

MEX) 7-83

Index-5

	toc
	Overview of S-Functions
	What Is an S-Function?
	Using S-Functions in Models
	Passing Parameters to S-Functions
	When to Use an S-Function

	How S-Functions Work
	Mathematics of Simulink Blocks
	Simulation Stages
	S-Function Callback Methods

	Implementing S-Functions
	M-File S-Functions
	MEX-File S-Functions
	MEX-File Versus M-File S-Functions

	S-Function Concepts
	Direct Feedthrough
	Dynamically Sized Arrays
	Setting Sample Times and Offsets

	S-Function Examples
	M-File S-Function Examples
	C S-Function Examples
	Fortran S-Function Examples
	C++ S-Function Examples
	Ada S-Function Examples

	Writing S-Functions in M
	Introduction
	Writing Level-2 M-File S-Functions
	About Level-2 M-File S-Functions
	Level-2 M-File S-Function API
	M-File S-Function Demos
	S-Function Template
	Instantiating a Level-2 M-File S-Function
	Generating Code from a Level-2 M-File S-Function
	Callback Methods
	Setup Method
	Run-time Object

	Maintaining Level-1 M-File S-Functions
	S-Function Arguments
	S-Function Outputs
	Defining S-Function Block Characteristics
	Processing S-Function Parameters

	Writing S-Functions in C
	Introduction
	Creating C MEX S-Functions

	Building S-Functions Automatically
	Deploying the Generated S-Function
	How the S-Function Builder Builds an S-Function

	S-Function Builder Dialog Box
	Parameters/S-Function Name Pane
	S-function name
	S-function parameters

	Port/Parameter Pane
	Initialization Pane
	Number of discrete states
	Discrete states IC
	Number of continuous states
	Continuous states IC
	Sample mode
	Sample time value

	Data Properties Pane
	Input Ports Pane
	Port name
	Dimensions
	Rows
	Columns
	Complexity
	Frame

	Output Ports Pane
	Port name
	Dimensions
	Rows
	Columns
	Complexity
	Frame

	Parameters Pane
	Parameter name
	Data type
	Complexity

	Data Type Attributes Pane
	Port
	Data Type

	Libraries Pane
	Library/Object/Source files
	Includes
	External function declarations

	Outputs Pane
	Code for the mdlOutputs function
	Inputs are needed in the output function

	Continuous Derivatives Pane
	Discrete Update Pane
	Build Info Pane
	Show compile steps
	Create a debuggable MEX-file
	Generate wrapper TLC
	Save code only
	Enable access to SimStruct
	Additional methods

	Example of a Basic C MEX S-Function
	Defines and Includes
	Callback Implementations
	mdlInitializeSizes
	mdlInitializeSampleTimes
	mdlOutputs
	mdlTerminate

	Simulink/Real-Time Workshop Interface
	Building the Timestwo Example

	Templates for C S-Functions
	S-Function Source File Requirements
	Statements Required at the Top of S-Functions
	Callback Methods That an S-Function Must Implement
	Statements Required at the Bottom of S-Functions

	The SimStruct
	Compiling C S-Functions

	Legacy Code Tool
	Overview of Legacy Code Tool
	Using Legacy Code Tool
	Legacy Code Tool Data Structure
	Legacy Code Tool Function Specifications
	Function Name
	Input Arguments
	Output Arguments
	Parameter Arguments

	Legacy Code Tool Demos

	How Simulink Interacts with C S-Functions
	Process View
	Calling Structure for Real-Time Workshop
	Alternate Calling Structure for External Mode

	Data View
	Accessing Signals Using Pointers
	Accessing Contiguous Input Signals
	Accessing Input Signals of Individual Ports

	Writing Callback Methods
	Converting Level 1 C MEX S-Functions to Level 2
	Obsolete Macros

	Creating C++ S-Functions
	Source File Format
	Making C++ Objects Persistent
	Building C++ S-Functions

	Creating Ada S-Functions
	Introduction
	Ada S-Function Source File Format
	Ada S-Function Specification
	Ada S-Function Body

	Writing Callback Methods in Ada
	Callbacks Invoked by Simulink
	Implementing Callbacks
	Omitting Optional Callback Methods
	SimStruct Functions

	Building an Ada S-Function
	Ada Compiler Requirements

	Example of an Ada S-Function
	Times_two Package Specification
	Times_two Package Body
	mdlInitializeSizes
	mdlOutputs
	Building the Times_two Example

	Creating Fortran S-Functions
	Introduction
	Level 1 Versus Level 2 S-Functions

	Creating Level 1 Fortran S-Functions
	Fortran MEX Template File
	Example of a Level 1 Fortran S-Function
	Inline Code Generation Example

	Creating Level 2 Fortran S-Functions
	Template File
	C/Fortran Interfacing Tips
	MEX Environment
	Compiler Compatibility
	Symbol Decorations
	Fortran Math Library
	CFortran
	Obtaining a Fortran Compiler

	Constructing the Gateway
	Simple Case
	Code with States
	Setup Code
	SUBROUTINE Versus PROGRAM
	Arguments to a SUBROUTINE
	Arguments to a FUNCTION
	Interfacing to COMMON Blocks

	Example C MEX S-Function Calling Fortran Code

	Porting Legacy Code
	Find the States
	Sample Times
	Multiple Instances
	Use Flints if Needed
	Considerations for Real Time

	Implementing Block Features
	Dialog Parameters
	Tunable Parameters
	Tuning Parameters in External Mode

	Run-Time Parameters
	Creating Run-Time Parameters
	Creating Run-Time Parameters All at Once
	Creating Run-Time Parameters Individually

	Updating Run-Time Parameters
	Updating All Parameters at Once
	Updating Parameters Individually

	Tuning Runtime Parameters

	Creating Input and Output Ports
	Creating Input Ports
	Initializing Input Port Dimensions
	Sizing an Input Port Dynamically

	Creating Output Ports
	Scalar Expansion of Inputs
	Masked Multiport S-Functions

	Custom Data Types
	Sample Times
	Block-Based Sample Times
	Specifying the Number of Sample Times in mdlInitializeSizes
	Setting Sample Times and Specifying Function Calls in mdlInitial
	Example: mdlInitializeSampleTimes

	Specifying Port-Based Sample Times
	Specifying Inherited Sample Time for a Port
	Specifying Constant Sample Time for a Port
	Configuring Port-Based Sample Times for Use in Triggered Subsyst

	Hybrid Block-Based and Port-Based Sample Times
	Multirate S-Function Blocks
	Example of Defining a Sample Time for a Continuous Block
	Example of Defining a Sample Time for a Hybrid Block

	Synchronizing Multirate S-Function Blocks
	Specifying Model Reference Sample Time Inheritance
	Sample-Time Inheritance Rule Example

	Work Vectors
	Work Vectors and Zero Crossings
	Example Involving a Pointer Work Vector
	Memory Allocation

	Function-Call Subsystems
	Processing Frame-Based Signals
	Handling Errors
	Exception Free Code
	ssSetErrorStatus Termination Criteria
	Checking Array Bounds

	S-Function Examples
	Example of a Continuous State S-Function
	matlabroot/simulink/src/csfunc.c

	Example of a Discrete State S-Function
	matlabroot/simulink/src/dsfunc.c

	Example of a Hybrid System S-Function
	matlabroot/simulink/src/mixedm.c

	Example of a Variable-Step S-Function
	matlabroot/simulink/src/vsfunc.c

	Example of a Zero Crossing S-Function
	matlabroot/simulink/src/sfun_zc_sat.c

	Example of a Time-Varying Continuous Transfer Function
	matlabroot/simulink/src/stvctf.c

	S-Function Callback Methods — Alphabetical List
	SimStruct Functions — By Category
	Introduction
	Language Support
	The SimStruct

	SimStruct Macros and Functions Listed by Usage
	Input and Output Ports
	Run-Time Parameters
	State and Work Vector

	Examples
	S-Function Features
	S-Function Examples
	S-Function Builder
	Writing S-Functions in C
	Creating C++ S-Functions
	Creating Ada S-Functions
	Creating Fortran S-Functions

	Index

	tables
	Flag Argument
	Fields in the sizes Structure
	Header Files Included by simstruc.h When Compiling as a MEX-File
	Header Files Included by simstruc.h When Used by Real-Time Works
	Macros Used in Specifying Vector Widths
	SimStruct Macros and Functions Listed by Usage
	Data Type
	Dialog Box Parameters
	Error Handling and Status
	Function Call
	I/O Port — Signal Specification
	I/O Port — Signal Dimensions
	I/O Port — Signal Access
	Run-Time Parameters
	Sample Time
	Simulation Information
	State and Work Vector
	Miscellaneous
	Real-Time Workshop

